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Abstract: In this paper, we construct a new iterative scheme by hybrid projection method and prove strong con-
vergence theorems for approximation of a common element of set of common fixed points of an infinite family
of asymptotically quasi-¢-nonexpansive mappings, set of solutions to a variational inequality problem and set of
common solutions to a system of generalized mixed equilibrium problems in a uniformly smooth and 2-uniformly
convex real Banach space. Our results extend many important recent results in the literature.
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1 Introduction

Let C be a closed convex subsets of Banach space F .
Let f be a bifunction from C x Cto R, ¢ : C —
R be mapping and A : C' — E* be a nonlinear map-
ping. The”so-called” generalized mixed equilibrium
problem is to find z € C such that

f(z,y) +(Az,y — 2) + 9(y) —@(2) 2 0,Vy € C. (1)

The set of solution of (1) is
by GMEP(f, ) ,ie.

denoted

GMEP(f,¢) ={2€C| f(z,y) + (Az,y — 2) +
e(y) —p(z) > 0,Vy € C}.

Special cases:
(D If A = 0 ,then the problem (1) is equivalent to
find z € C such that

f(z,y) +9y) —p(2) > 0,Vy € C. (2)

This is called the mixed equilibrium problem. The set
of solution of (2) is denoted by M EP(f, ) .

(I) If f = 0 ,then the problem (1) is equivalent
to find z € C such that

(Az,y —2) +o(y) —p(2) 20,y C.  (3)
This is called the mixed variational inequality of

Browder type. The set of solution of (3) is denoted
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by VI(C, A, ) . In particular, VI(C, A,0) is de-
noted by VI(C, A) .

II) If ¢ = 0, then the problem (1) is equivalent
to find z € C such that

f(z,y)+ (Az,y — 2z) > 0,Vy € C. 4)

It is called the generalized equilibrium problem. The
set of solution of (4) is denoted by GEP(f) .

V) If A = 0, = 0 ,then the problem (1) is
equivalent to find z € C such that

f(zy) = 0,Vy € C. &)

It is called the equilibrium problem. The set of solu-
tion of (5) is denoted by EP(f) .

An operator B : C' — FE* is called a-inverse-
strongly monotone, if there exists a positive real num-
ber a such that

(x —y, Bz — By) > a||Bz — By|*,Vz,y € C.

Obviously, if B is « -inverse-strongly monotone,
then B is é -continuous. In this paper, we shall as-
sume that

(B1) B is « -inverse-strongly monotone;

(B3) ||By|| < ||By — Bul| forally € C and u €
VI(C,B).

The generalized mixed equilibrium problems in-
clude fixed point problems, optimization problems,
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variational inequality problems, Nash equilibrium
problems and equilibrium problems as special cases
(see, for example,[1]). Some methods have been
proposed to solve the generalized mixed equilibrium
problem(see, for example,[1-5]).Numerous problems
in Physics, optimization and economics help to find a
solution of problem (5).

Recently, Petrot et al.[6] introduced the following
hybrid iterative scheme for approximation of a com-
mon fixed point of two relatively quasi-nonexpansive
mappings, which is also a solution to generalized
mixed equilibrium problem in a uniformly smooth and
uniformly convex real Banach space:

xg € C chosen arbitrariy,

Yn = J 10Tz + (1 —0)J 21),

2n = J YanJxy + B Txy + Y JSty),

f(un, y) + (Aun, y — un) + @(y) — p(un)+
%(y — Up, Ju, — Jz) > 0,Vy € C,

Cn={2€C:¢(2,un) < ¢(2,2n)},

Qn=1{2€C:{(xy—2zJog— Jx,) >0},

Tn+1 = chanJJO-

They proved strong convergence theorem to a com-
mon element of set of common fixed points of S and
T and set of solutions to the generalized mixed equi-
librium problem.

Furthermore, Cholamjiak [7]introduced a hybrid
iterative scheme for approximation of a fixed point of
relatively quasi-nonexpansive mapping which is also
a solution to equilibrium problem and variational in-
equality problems in a 2-uniformly convex real Ba-
nach space, which is also uniformly smooth:

xg € C chosen arbitrariy,

Cl = C,l’l = Hcll'o,

vp =UHoJ Y Jzy — 6,Bxy),

Yn = J HanJzn + Bnd Ty + Y d Svy),
f(unay) + rin<y — Up, JUup — Jyn> >0,Vy e C,
Cni1={z € Cn: ¢(2,un) < d(z,20)},

Tn4+1 = HC,H_le-

Then, he proved that {z,} converges strongly
to lIpxy ,where F' := F(T)N F(S)NVI(C,B)N
EP(F)#10.

In [8], Martinez- Yanes and Xu introduced the fol-
lowing iterative scheme for a single non-expansive
mapping 1" in a Hilbert space H :

xg € C,

Yn = Qo + (1 - an)Txny

Crn={2€C:|z~- ynll* < an(f|zol?
+2<$n - ‘TO?Z)) + HZ - anQ}v

Qn={z€C:{(xy,—2z,x0—xp) >0},

Tnt+1 = Pe,ng.To
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where Po denotes the metric projection of H onto
a closed and convex subset C' of H . They proved
that if {o,} C (0,1) and Jim an, = 0, then the

sequence {x,, } converges strongly to Pr(7)o .

In [9], Qin and Su extended the results of
Martinez-Yanes and Xu [8] from Hilbert spaces to Ba-
nach spaces and proved the following result: Let C' be
a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex Banach space £ and
let T : C" — C be a relatively non-expansive map-
ping. Assume that {a,,} C (0,1) and Jim an, =0.
Define a sequence {x, } in C by the following algo-
rithm:

xg € C,

Yn = J HanJzo + (1 — ) JTxy),

Cn ={2 € C:0(z,yn) < &(z,20)},
Qn={z€C:(xy,— 2z Jxg— Jzx,) >0},
Tni1 = lle,ng, o, n > 0.

If F(T) is nonempty, then {z,} converges strongly
to HF(T)'IO .

In [10], Plubtieng and Ungchittrakool introduced
the following hybrid projection algorithm for a pair of
relatively nonexpansive mappings:

xg € C chosen arbitrariy,
o= J B Tz + B2 T,
+89) 7Sz,),
yn = J HanJzo + (1 — an)Jzy), 6)

Cn - {Z S C: QS(Zayn) S ¢(Z,$n)+

an(|lol|? + 2(Jxn — Jx0,2))},
Qn=4{2€C:{xy—zJrg— Jx,) >0},
Tn+1 = Ue,n@, o

where{an},{ﬁr(f)},i=1,2,3, are sequences in (0, 1) sat-
istying 8% + 82 + 8% = 1 and S and T are rel-
atively nonexpansive mappings. They proved under
the appropriate conditions on the parameters that the
sequence {x, } generated by (6) converges strongly to
a common fixed point of S and 1" .

2009, Qin et al. [11] introduced the following hy-
brid projection algorithm for two families of relatively
quasi-nonexpansive mappings, which are more gen-
eral than relatively nonexpansive mappings in a Ba-
nach space:
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xg € C chosen arbitrariy,
2ng = I (BN Tw, + BT Ty,
+ﬁn,;Jslxn>,

Yni = J N amiJzo + (1 — ani)Jzn),

Chni= {z eC: ¢(Zayn,i) < Pz, xp)
+am<\|xou2+2<an—Jxo,z>>}, ™
ﬂ Cn uQO -

—{ZGQn1 (Tn — 2, J0
—Jx,) > 0},
Tnt1 = le,ng, To-

They proved under appropriate conditions on the pa-
rameters that the sequence {x,,} generated by (7) con-
verges strongly to a common fixed point of the two
families {S;} and {7} .

Recently, Wangkeeree and Wangkeeree[12] intro-
duced the following hybrid projection algorithm for
approximation of common fixed point of two families
of relatively quasi-non- expansive mappings, which is
also a solution to variational inequality problem in a
Banach space:

xg € C  chosen arbitrariy,
Ci=C,Ci= N Cuy,
Ty = HC1x07 -
wy; = e, J T2y — A\ i By),
S0 80 ®)
Yni = J_l(an,ijl'o + (1 - an,i)JZn,i)y
Cn,i = {Z cC: ¢(Zayn,i) < ¢(Za$n)+
am(onHQ + 2(Jxy, — Jxo,2))},
Cn+1 == ml Cn+1 (2
Tnt1 = e, +170.

They proved under appropriate conditions on the
parameters that the sequence {x,} generated by
(8) converges strongly to a common element of
the set of common fixed points of the two fami-
lies {.S;} and {7} and set of solutions to a variational
inequality problem.

In 2009, Takahashi and Zembayashi [13] proved
strong and weak convergence theorems for finding a
common element of the set of solutions of an equilib-
rium problem and the set of fixed points of a relatively
nonexpansive mapping in a Banach space by using the
shrinking projection method.

Motivated by the above mentioned results and the
on-going research, we introduce a new hybrid pro-
jection algorithm based on the shrinking projection
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method and prove strong convergence theorem for ap-
proximation of a common element of the set of com-
mon fixed point of an infinite family of asymptotically
quasi-¢-nonexpansive mappings, set of solutions to a
variational inequality problem and the set of solutions
to system of generalized mixed equilibrium problems
in a 2-uniformly convex real Banach space which is
also uniformly smooth. Our results extend the results
of Martinez-Yanes and Xu[8], Plubtieng and Ung-
chittrakool [10], Takahashi and Zembayashi [13] and
many other recent and important results in the litera-
ture.

2 Preliminaries

Throughout this paper, we denote by N and R the
sets of nonnegative integers and real numbers, respec-
tively. Let E be a Banach space and let E* be the
topological dual of .For all x € E and z* € E*
we denote the value of z* at z by (x, x*) .The duality
mapping J : E — 2F" is defined by
J@) = {2* € B*: (w,2%) = |J|]? = |lo"2}.

It is well known that if F is uniformly smooth,
then J is uniformly norm-to-norm continuous on each
bounded subset of £ .Now, let £ be a smooth Banach
space, we use ¢ : ' x ¥ — R to denote the Lyapunov
functional defined by

$a,y) = |lz|* ~
It is obvious from the definition of ¢ that
(Al = llyl)? < ¢(z,y) <

Following Alber [14], the generalized projection Il :
E — (C'is defined by

2(z, Jy) + |ly||*,Vz,y € E.

(]l + lylh)>.

[Iox = argmin ¢(y, x),Vx € C.
yeC

If E is a Hilbert space H , then ¢(y,x) =
ly — x||?,2,y € H and Il¢ is the metric projec-
tion Po of £ onto C'.

Let C' be a nonempty closed convex subset
of E and T be a mapping from C into itself. We
denoted F'(T') by the set of fixed points of 7. A
point p € C' is said to be an asymptotic fixed point
of T'[15] if C contains a sequence {z,} which con-
verges weakly to p such that nh_)ngo e — Txy|| =0.
The set of asymptotic fixed points of 7" is denoted
by Fﬁ; A mapping T’ from C into itself is said to be

relatively nonexpansive [15,16] if F'(T ) = F(T) #
0, and ¢(p,Tx) < ¢(p,x) forall z € C and p €
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F(T) . T is said to be quasi-¢-nonexpansive [16-
18]if F(T) # 0 and ¢(p,Tx) < ¢(p,z) for
all x € C and p € F(T) . The mapping T is
said to be asymptotically-¢-nonexpansive if there ex-

ists a sequence {k,} C [1,4o00] with lim k, =
n—r—+0oo

1 such that ¢(T"z, T™y) < k,¢(x,y) for all z,y €
C T is said to be asymptotically quasi-¢-
nonexpansive [17,18] if F/(T') # () and there exists a
sequence {k,} C [1,4o00] with lim k, = 1 such

n—+00
that ¢(p,T"x) < kpo(p,z) for all z € C)p €
F(T)andn >1.

The class of (asymptotically) quasi-¢-
nonexpansive mappings is more general than
that of relatively nonexpansive mappings which
requires the restriction: F(T') = F(T) . A quasi-¢-
nonexpansive mapping with a nonempty fixed point
set F'(T) is an asymptotically quasi-¢-nonexpansive
mapping, but the converse may not be true.In
the framework of Hilbert spaces,(asymptotically)
quasi-¢-nonexpansive mappings is reduced to
(asymptotically) quasi-nonexpansive mappings.

It is well-known that the following conclusions
hold:

Lemmal [16] Let E be uniformly convex and
smooth Banach space. Let {y,} and {z,} be se-
quences in E such that either {y,} or {z,} is
bounded. If lim ¢(yn,zn) = 0,then lim |y, —
n——+00 n—r—+0o0

zn]| = 0.

Lemma 2 [14] Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Ba-
nach space E , x € E and xq € C .Then, xo = llcx if
and only if (xg —y, Jox — Jxg) >0, Vy € C.

Lemma 3 [14] Let C be a nonempty closed convex
subset of reflexive, strictly convex and smooth Banach
space E and x € E , Then

Py, ex) + ¢p(Uoz, z) < Py, z),Vy € C.

Lemmad4 [I8] Let E be a nonempty closed con-
vex subset of uniformly convex and smooth Banach
space E .Let T : C' — C be a closed and asymptot-
ically quasi-¢-non-expansive mapping. Then F(T) is
a closed convex subset of C'.

Lemma 5 [I8] Let E be a uniformly convex Banach
space, v > 0 be a positive number and B,(0) = {z €
E : ||z|| < r} . Then for any given infinite sub-
set {x,} C By(0) and for any given sequence {\,, } of

“+o00

positive numbers with > A, = 1 ,there exists a con-
n=1

tinuous, strictly increasing and convex function g :
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[0,2r) — [0,00) with ¢(0)
anyi,j € N withi < j.

0 such that for

+oo +oo
1D Anzal® < D7 Aallzall® = Xidjg(llzi — z51)).
n=1 n=1

For solving the equilibrium problem for bifunc-
tion f : C'x C'— R ,let us assume that f satisfies the
following conditions:

(CD f(z,x) =0,Vx € C

(C2) f is monotone,i.e. f(z,y) + f(y,z) <
0,Vz,y € C
(C3)Va,y,z € C,limsup f(tz+ (1 — t)z,y) <

10
f(@,y)

(C4 Vx € C,y — f(x,y) is a convex and lower
semicontinuous.

If a bifunction f : C x C — R satisfies
conditions(C1)-(C4), then we have the following two
important results.

Lemma 6 [18] Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Ba-
nach spaces E , let f : C x C — R be a bifunc-
tion satisfying conditions (C1)-(C4), ¢ : C — R be
a lower semicontinuous and convex functional, A
C — E* be a continuous and monotone mapping.
Forr > 0 and x € FE ,define a mapping TTG FE—
C as follows:

Tfw={z € E: f(z,y) + o(y) - ¢(z)
+(Az,y —2) + %(y —z,Jz—Jx),Vy € C}.

Where G(x,y) = f(z,y) + ¢(y) — p(z) + (Az,y —
x),Vx,y € C. Then, the following holds:

(1) TTG is single-valued;

(2) F(T;7) = GMEP(f.¢) ;

(3) T, is quasi-p-nonexpansive;

(4) GMEP(f,p) is closed and convex.

Lemma 7 [14] Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Ba-
nach spaces E , let f : C x C — R be a bifunction
satisfying conditions(C1)-(C4), and let r > 0. Then,
forx € Eandq € F(T)),

¢(q, T z) + (T z, 2) < ¢(q, ).

The function V as studied by Alber
[14]: V(x,2*) = ||22|| — 2(z,2*) + |z*|* for
all z € FE and z* € FE* .Thus, V(z,z%)
¢(z, 1 (z*)) .

Lemma 8 [/4] Let E be a reflexive strictly convex
Banach space. Then

V(z,z*) +2(J Hz*) — z,y") < V(z,z* +y%),
forallx € E and x*,y* € E*.
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Lemma9 [19] Let E be a 2-uniformly convex Ba-
nach space, then there exists a constant ¢ > 0 such
that for all x,y € F and jx € Jx, jy € Jy ,we have

(x —y,jz — jy) > cllz — y|*.

1 . . .
where - is the 2-uniformly convexity constant.

3 Main results

Theorem 10 Let C' be a nonempty closed con-
vex subset of 2-uniformly convex and uniformly
smooth Banach space E .Suppose B c —
E* is an operator satisfying(BI)-(B3).For each k =
1,2,---,m ,let A C — FE* be a continu-
ous and monotone mapping, pr : C — R be a
lower semi-continuous and convex functional, let fj,
C x C — R be a bifunction satisfying(ClI)-
(C4)and T; C —- CV¥i € N be an in-
finite family of closed and asymptotically quasz -

)} <

nonexpansive mapping with sequence

[1,4+00), lim D = 1 where Ty = I .As-
n—-+00o
sume that T;,¥i € N is asymptotically regular
onC,ie, lim [T/ 2, — Tl'x,| = 0 andF =
n—+oo

R <»mu”ﬁGMEP(fk,gmmvuc,B) >

=0
(). Let x,, be a sequence generated by

xg € C chosen arbitrariy,
yn = J Han o Y (Jxy — A Bry)+
(1 —an)dzp),
+oo /.
o= I3 B IT ),
un = TT”;"nTSn e TSR TGy, )
Cn={2€C:¢(z,up) < (1 —an)d(z,2n)
+an¢(za$n) < Qb(zvxn)
+(kn — 1)M,},
Qn={2€C:(xn—2,Jxg— Jx,) >0},
Tny1 = le,ng,To
where M, = sup{d(z,x,)|lz € F} <
+o0o for each n > 0,k, = sup{kff)}, {M\} C
i>0
[a,b] for some a,b with 0 < a < b <

co, where % is 2-uniformly convexity constant of E,

foreach k = 1,2,---,m,{rp,},;>5 C (0,+0o0) sat-

isfying iminfry, , >0, forall z,y € C', Gi(z,y) =
n—-+4o0o

Fe(z,9) + or(y) — ok (2) + (Agz,y — 2), TSk (2) =

{z € C : Gilz,y) + %(y —z,Jz — Jzx) >

0,Vy € C}, {an},{/&(f)},i € N are real se-
quences in [0, 1] satisfies the conditions: ¥n > 1,0 <
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B0 < 1, Y = Lliminf(1 — a,)5 60 >
0,Vi € N .Then the sequence {x,} converges
strongly to llpx .

Proof: We define a bifunction G, : C' x C' — R by

Vr,y € C .Then, we prove from Lemma 6 that
the bifunction (). satisfies conditions(C1)-(C4)for
each £ = 1,2,---,m . Therefore, the generalized
mixed equilibrium problem (1) is equivalent to the fol-
lowing equilibrium problem: find x € C such that

Gk(l’,y) > O,Vy eC.

Hence GM EP(fy, ox) = EP(Gy) , By taking 6% =
TG Tkt - T2 TG k= 1,2, m and 69 =

I for alln > 1 We obtain u, = 0y, Lett, =

JY(Jx, — A\ Bxy,) .We divide the proof of Theorem
1 into five steps:

Step 1 We first show that C';, and @), are closed and
convex foreachn > 0.
In fact,for 2 € C},, ,we see that

QZ)(Z’ um) < an¢(27 xm) + (1 - am)¢(zv Zm)

is equivalent to

2(z, amJ T, + (1 — am) I 2m — Jupm)
< amllzml® + (1= am)llzml® = um?
and
21 — am)(z, Jxm — J2m)
< (1= am)(lzmll® = l2ml?) + (kn = 1) M.

The last two inequalities are the affine with respect
to z ,s0 (', is closed and convex. From the definition
of (), ,we may obtain that ),, is closed and convex
foreachn > 0.

Step 2 Next, we show that ' C C, (@, for
eachn > 0.

First we show that F' C C,, foreachn > 0.

In fact, by the definition of ¢(-,-) and (9), for
each p C F', we obtain

+o0
d(p, zn) = o(p, J (> BYIT 2,))
1=0
+oo ]
= pll* = 2(p, > BOIT @)
1=0
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+o00
+ IO BV I ) |12
=0
—+00 )
Ipll> =23 8, JT )
1=0
—+00 ]
= > B0¢(
=0
+o00
Zﬁ#’k%(
= 252/3

= praxn +ZB

+o0
+ > BO|T 2 ?

1=0

IN

pulTin-Tn)

IN

D5 Tp)

1+ (k) = 1)]¢(p, xn)

Z) = D)o(p, zn)

Observe that p C F implies p C C', by Lemma 3,
Lemma 8 and (9), for all p C C', we have

(kn - 1) (10)

d)(xm HCtn) < Cb(-rna tn) - ¢(HCtna tn)
< (b(p? tn) = V(l% J‘rn - )\ann)
< Vip,(Jzy — \yBxy) + Ay Bxy,)
_2<J_1(an - )\ann) - D, )\nB$n>
= Vip,Jxn) — 2\ (tn — p, Bxy)
= o(p, ) — 2 (Tn — p, By)
+ 2{tn — Tp, —AnBxy). 80
From condition (B1) and p € VI(C, B) , we obtain
=2\ (xp, — p, Bxy)
= _2)\n<$n - D, Bz, — BP> - 2)\n<xn - P, Bp>
< —2\,a| Bz, — Bp|?. (12)

By Lemma 9 and condition (B1), we also obtain
2(ty, — xy,
2

EHJtn — Jan|| - Anl| Bl

, —AnBan) < 2|ty — xpl| - An|Baa|

2 2
= A Bzal® < 2AT- (| Bz — Bpl®. (13)

Combining (11)-(13) and 0 < b < ca ,we obtain
b
< o(p,xy) + 2A, (f — ) - ||Bz, — Bp|?

< o(pswn). (14)

Thus, by (9), (10), (14), Lemma7, Lemma6 and
the fact that T,gkn(k = 1,2,---,m) is quasi-¢-
nonexpansive mapping, for each p C F', we obtain

B(p, un) = é(p, 05 yn)
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IN

¢ (P, Yn)

o(p, T Han Moty + (1 — an)Jz,))

IplI* = 2(p, an STty + (1 = an)J zp)

HJ_l(anJHCtn + (1 - an)Jzn)H2

HPH2 — 2a(p, Jllctn) — 2(1 — an)(p, J2n)

| JH oty 4+ (1 — an)J 2,2

IpII* = 20 (p, JTctn) = 2(1 = an)(p, Jzn)

anHHCth2 +(1— O‘n)”zn||2

an([Ipl? = 2(p, Jcty) + [[Tots|?)

(1 = an)(Ipl* = 2(p, Jzn) + [12a]®)

and(p, ety) + (1 — an)d(p, 2n)

and(p, Tn) + (1 — an)(p, 2n)

and(p, xn) + (1 = om)[d(p, ¥n)

(kn - 1)Mn]

o(p,xn) + (kn — 1) M,

So, p C C,, .This implies that ' C C,,,Vn > 0.
Second we show that F' C @), foreachn > 0.

In fact, forn = 0, FF C C' = () is obvious. Suppose

that F' C @), for some positive integer n , it follows

from x,,41 = Il¢,nQ, To and Lemma?2 that

(Tnt1 — 2, Jxg — JTpg1) > 0,Vz € Cp, N Q.

From F' C @, , we obtain F C C, N @, .In par-
ticular, for all z C F', the last inequality should be
held. Combining the definition of ),,+1 , we obtain
that F' C Q41 .So we have that I C C, N Qy, Vn >
0.

_l’_

I+ IA+

_l’_

IN + INIA

5)

Step 3 Now,we show that {z,,} is Cauchy sequence.

In fact, by the construction of @),, and Lemma
2, we have that z,, = Ilg,xo , it then follows from
Lemma 3 that

P(zn, x0) = ¢(Ilg, 0, To)
< ¢(p7 330) - d)(p? ‘Tn)
< ¢(p> $0)-

for each p € F C @Q,,Yn > 0 .Hence, the se-
quence ¢(x,,, zo) is bounded.

Combining z,+1 = I¢,ng,z0 € @n and
Lemma 3, we obtain

0< ¢($n7xn+1) < ¢($na 'CEO) - ¢(wn—17$0)'

for all n > 0 .Thus, the sequence ¢(xy,zo) is
nondecreasing. It follows from the boundedness
of ¢(x,, xo) that the limit of ¢(zy,, zp) exists.
For any positive integer m , it then follows from
Lemma 3 that
¢($n+m7 xn) = Qb(anrma HanO)
< ¢(xn+m7 xo) - ¢(Han07 .’L'())
= ¢($n+m7 {L’o) - ¢($n7 «TO)‘ (16)

Issue 3, Volume 12, March 2013



WSEAS TRANSACTIONS on MATHEMATICS

it follows from (16) that ¢(x,11m, zg) — 0as m,n —
oo . we have from (Al) and the boundedness
of ¢(xy, xo) that {x,, } is bounded, combining Lemma
1, we obtain

Tptm — Tn — 0,m,n — 00.

Hence, the sequence {x,, } is Cauchy in C'. Since E is
a Banach space and C' is closed convex, then there
exists p € C such that x,, — pasn — oo . Now,
since @(Tp4m, o) — 0 as m,n — oo ,we have in
particular that lim_ &(Tp11,2,) = 0 and this further

implies that nh_}rgo |Tne1 —zn]| = 0.
Since zp4+1 = le,ng, 7o € C) , we have

0 < ¢(Tni1,tn) < G(Tni1, Tn)
(kn, — 1)M,, — 0,n — oo.

+
From Lemma 1, we obtain that
nh_{go [#n41 — unl| = 0.

Therefore

|20 — unll < |20 — Tnia]

+ ||Zpt1 — un|| — 0. a7n

It follows from lim ||z, — p|| = 0 and (17) that
n—-+00

Up — P, — OO. (18)

Step 4 Now we prove that

+oo m
p €[V E@IN[ GMEP(fx, o0 \VI(C,B).
=0 k=1

+oo
(a) First we prove that p € (| F(T;) .
i=0
Since FE is uniformly smooth space, we have

that J is uniformly norm-norm continuous on any
bounded sets and (17),we obtain

| Jzpn, — Juy|| = 0. (19)

lim

n—oo
It follows from the boundedness of the se-
quences {z, }and{k,}, ¢(p, T xy) < kno(p, ) for
eachp € Fandi € Nthat the sequences {JT"z,} are
bounded. Thus there exists r > 0 such
that {JT'z,} C B,(0). For each p € F', we have
from Lemma 5, Lemma 6, Lemma 7 and (14) that

@b(pa Un) = QS(pv Q?yn)

o(p, Jﬁl(anJHCtn + (1 — an)Jzn))

IN
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and(p, lety) + (1 — an)d(p, 2n)
and(p, Hotn) + (1= an) - (|[p]]?

+00 oo

2(p, Y BV ITwy) + (| Y BV Iz, ||?)
=0 =0

and(p, cty) + (1 — ay) -

+o00
(Ipl?> =23 B p, JT )
=0

IN

+o0 ]
> BINIT 2

_|_
=0
— BOBO I Tg 20 — JTwnl]))
+oo
= and(p,Mcty) + (1 —an) - O BV o(p, T 2y)
=0
— BOBD (| T wn — JT )
< and)(py mn) + (1 - an)
+oo
O B+ (K = D](p, )
=0
— BOBD I JTg w0 — JTwnl]))
< and(pzn) + (1 — an)o(p, zn) + (kn — 1) M,

(1= an) BB g (| T T — JT] 2]
¢(paxn) + (kn - 1)Mn

(1= o) B BV g (1T TG — TT} ).
This implies that

0< (1—an)BYBYg(|JTg w0 — JT20))
¢(p7$n) - (25(177 un) + (kn - I)Mn

IN

(20)
On the other hand, we have
znll” = lJunll® = 2(p, Jxn — Jun)

[0 = wnll - (]l + [lunll)
2llpll -l Jzn = Jual-

<
+

In view of (17) and (19), we obtain
¢(p; n) — ¢(p,un) = 0,n = co. (21
Combining(20)-(21), HETOO(/{” - 1M, = 0,Ty =

I and the assumption lim (1 — ay,) BT(LO) B,(Li) > 0 ,we
h n—o0
ave

g(||[Jzy, — JT xy||) — 0,n — 0.
It follows from the property of g that
lim ||Jx, — JT'z,|| =0

n—-+o0o

(22)
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Since x,, — p asn — oo and J is uniformly norm-
norm continuous on any bounded sets, we obtain that.

|Jzn — Jp|| = 0,n — occ. (23)
Note that
[JT an = Jpl| < | Jwn — JT] 2l
+ || Jz, — JIp|.
From (22) and (23), we see that
lim [|JT}'x, — Jp| = 0. (24)

n—+oo

Note that J~! is also uniformly norm-norm continu-
ous on any bounded sets. It follows from (24) that

i
lim |72, — p|| = 0. (25)

Note that || 7"z, — p|| < | T e, — TPw,|| +
T, , the asymptotic regularity of T and

(25), we have | T2, — p| = 0 .That

is, T;(T"x,) — p as n — oo it follows from the

hm
not

closeness of T; that T;p = p,Vi € N ,ie. p €
ﬂ F(T;) .
(b) Now we prove that
m
pe ﬂ GMEP(fi, or) = | EP(Gy).

k=1 k=1

In fact, in view of u,, = 0y, ,(15) and Lemma
7, for each ¢ € F(6%) ,we have

0 < ¢(un, Yn) = &0 Yn;> Yn)

oD, yn) — O(p, 07, Yn)

o(p, xn) — d(ps un) + (kn — 1) M.

It follows from (21) and ngr—ir-loo(kn - )M, =

0 that ¢(up,yn) — 0as n — oo .Using Lemma 1,
we see that ||u, — yn|| — 0 as n — oo .Further-
more, [[n — yall < |2 — unll + 1n — yull —
0asn — oo .Since z, — p,n — coand ||z, —y,| —
0,n — oo ,then y, — p,n — oo . By the fact
that Hfl, k = 1,2,---,m is relatively nonexpansive
and using Lemma?7 again, we have that

<
<

0< ¢(05yn7yn)
< o(p.yn) — ¢(p, Om)
< ¢(p7$n) - (b(p? eﬁyn) + (kn - 1)Mn-(26)
Observe that
o(p,un) = ¢(p, 0% yn)
Gm mGm G G

- ¢(p Tr'm n- Tm— lln o 7'2271 TllrLyn)

= O(p, T\ T - Oyn)

< é(p,O0nyn) (27)
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Using (27) in (26), we obtain that

0 < (0% yn, yn) < (P, 20) — S, un)

+(kn — 1)M,, — 0,n — 0.
Then Lemma 1 implies that hm 108y, — yull =
0,k=1,2,---,m Now

165yn — 2l < 165yn — ynll + llyn — 2|

—0,n—>o00,k=1,2,---,m.
Similarly, lim 1051y, —p| = 0, k =
1,2,---,m Th1s further implies that

lim ||0¥ Yy, — 6%y, =0. (28)
n—+oo

Also, since J is uniformly norm-norm continu-

ous on any bounded sets and using (28), we ob-

tain that lim |[JO% 1y, — JOFy,|| = 0. .From
n—-+oo

the assumption {ry,}t> < (0, —l—oo) satisfying

liminf 7y, > 0 for each k=1,2,---,m ,we see
n——+0oo
that
9k—1 Qk
n—+o0o Tkn

By Lemma 6, we have that foreach k =1,2,---,m,

1
Tkn
+Gy(0Fyn,y) > 0,Vy € C.

——(y — 0%y, JORy, — JOF 1y,

Furthermore, replacing n by n; in the last inequality
and using condition (C2), we obtain

||J9njynJ - Jaflj_lynj I

k
ly — 6, yn, |l - _—
1
> —(y- ek Yn;o Jek Yn; — Jek 1yng>
Tk,

> —Gr(0 yn, y) = Gr(y, 08 yn,). Yy € C.

By taking the limit as j — o0 in the above inequal-
ity, foreach £k = 1,2, - - -, m we have from the condi-
tion(C4),(29)and 9{33, Yn, — pthat Gy(y,p) < 0,Vy €
C.

ForO<t<landy e C, definey, =ty+ (1 —1t)p
It follows from y,p € C that y, € C which yields
that G (y, p) < 0. It follows from the conditions
(C1) and (C4) that

0= Gr(yt,yt)
tGk(ytvy) =+ (1 - t)Gk(ytap)
tGk(ytvy)

IA A
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That is

Lett — 07, from the condition(C3), then we obtain
that Gi(p,y) > 0,Yy € C .This implies that p €

N EP(Gy) k=1,2, -
k=1

,m,i.e.

m

IS ﬂ GMEP(fx,px) = ﬂ
k=1 k=1
(c) Next we prove that lim |zn — ety|| = 0.

In fact, it follows from Lemma 3, Lemma 8, (13),
(17), (18) and é— Lipschitzian of B that

¢($n7 HCtn) < (b(xnv tn) - ¢(H0tn7 tn)
Oz, tn) = V(ey, Jr, — A\yBxy)
V(xn, Jon, — \yBxy + Ay Bxy,)
—20J Y Jzp — M\Bzyn) — T, \nBxy)
Oz, n) — 2(ty, — Tp, A Bxy)

2
= —2(tp — xTn, \yBxy) < E)\iHBa:n — BpH2

IAIA

2
< E)\%Ha:n —p|* = 0(n = o).
So, from Lemma 1, we have nlg)go d(xn, Uoty) =
0 which implies that

nh—>Holo |zn — ety || = 0. 30)
Thus, by the uniform continuity on any bounded sets
of J , we obtain that
lim ||Jx, — Jlct,| = 0. 31)
n—oo
(d) Now we prove that p € VI(C, B) .
Define D : E — 2P as follows:

po-{

where No(v) = {w € E : (v —u,w) > 0,Vu €
C'} is the normal cone to C' at v € C . Then
the multi-valued mapping D is maximal monotone
and D710 = VI(C, B) . Let G(D) denote the graph
of D and let (v, w) € G(D) ,then we have w € Dv =
Bv+ N¢(v) and hence w — Bv € N¢(v) .Therefore,
by Ilot, € C' ,we have

Bv+ N¢(v),v € C,
0,veC.

(v —THegty,w — Bv) >0 (32)
On the other hand, it follows from Lemma 2 that

<2} —et,, Jllot, — Jtn> > 0.
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That is

J:En — Jﬂctn
An

It follows from (32) and (33) that

(v —Tgtn, — Bay) < 0(33)

(v —Hety,w) > (v —ety, Bu)
> <U - HCtTLvBU>
Jx, — Jlct
+ <U Ctn7 \ - an>
n
= <’U Ilot,, Bv — Bﬂctn>
+ (v —Il¢t,, Bllgt, — Bxy,)
Jx, — Jlot
+ (v —Tlcty, n—C">
An
> o~ gty | - 11t = 2l
- n
Jct, — Jx
o~ Tty |- 1 = Tl
> _M(Hﬂctn—an Hjnctn—J:UnH).
« a
Where M =

ng and k — +oo , using (17),(18),(30) and (31), we
obtain that (v—p, w) > 0. Since D is maximal mono-
tone, we have p € D0 and hence p € VI(C, B) .
Thus we have p € F'.

Step 5 Finally, we prove that p = [Ipxg .

From Lemma 2 and the definition of @),, , we see
that z,, = Ilg,zo and (z, — 2, Jxg — Jx,) > 0,Vz €
Q. Since F' C @, foreach n > 0, we have

(zn

Let n — oo in the last inequality, we see
that (p — w, Jxg — Jp) > 0,Yw € F. In view of
Lemma 2, we can obtain that p = IIgpxzg . This com-
pletes the proof of Theorem 10.

In the spirit of Theorem 10, we can prove the fol-
lowing strong convergence theorem.

—w,Jzg — Jxy,) > 0,Yw € F.

Theorem 11 Let C be a nonempty closed convex sub-
set of a 2-uniformly convex and uniformly smooth
Banach space E . Suppose B C — E*is
an operator satisfying(B1)-(B3). For each k =
1,2,---,m let Ay : C — E* be a continuous and
monotone mapping, o : C — R be a lower semi-
continuous and convex functional, let f, : C x C —
R be a bifunction satisfying(C1)-(C4)and T; : C' —
C,¥i € N be an infinite family of closed and quasi-
¢-nonexpansive mapping, where

“+00 m
= [ FT)I([ GMEP(fy, ¢r)]
=0
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(YVI(C,B)+#0,

To = I .Let {x,,} be a sequence generated by

xg € C chosen arbitrariy,
yn = J HanJ e H(Jxy — A\ Bxy)+
(1 —an)dzn),
12 500
n=J (Z:()Bn Jszn)a
=
wn =T Tl T2 T .

Cr={2€C:¢(z,un) < (1 —an)p(z,2n)+

and(z,7n) < ¢(2,7n)},
Qn={z€C:(xvy,— 2z Jx, — Jxg) > 0},

21 =g, 1, (#0)

where X\, C [a, b] for some a,bwith0) < a < b < ca,
where % is 2-uniformly convexity constant of E , for
eachk = 1,2, ,m,{rr,},25 C (0,+00) satisfy-
ing liminfrg, >0,

n—+oo '

T

Tk,n

(x):{zEC:L@—z,Jz—JxH—

Tkn
Gi(z,y) > 0,Yy € C},
{an},{,&g)},i € N are real sequences in [0,1]
satisfies the conditions: ¥Yn > 1,0 < B,(ZZ) <
1LY Y = Lliminf(1 — a,)8 60 > 0,vi €
N Where Gr(z,y) = fr(zy) + ou(y) — er(2) +

(Agz,y—2z),Vz,y € C .Then the sequence {x,} con-
verges strongly to llpx .

Remark 12 Theorem 11 improves Theorem 3.1 of
Takahashi and Zembayashi [13] in the following as-
pects:

(a) From a relatively nonexpansive mapping to an
infinite family of quasi-@-nonexpansive mapping.

(b) Considering the variational inequality prob-
lem from zero to one.

(c¢) From an equilibrium problem to a system of
generalized mixed equilibrium problem.

Remark 13 It is worth pointing out that Theorem3.1
and Theorem3.2 of Yang, Zhao and Kim[18] need to
be held in the framework of the uniformly smooth and
uniformly convex real Banach space. Since, the proofs
of Theorem 3.1 and Theorem 3.2 in [18] make use
of Lemma 5, but Lemma 5 holds under the uniformly
convex space.
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