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Abstract: In this paper, we construct a new iterative scheme by hybrid projection method and prove strong con-
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1 Introduction
Let C be a closed convex subsets of Banach space E .
Let f be a bifunction from C × C to R , φ : C →
R be mapping and A : C → E∗ be a nonlinear map-
ping. The”so-called” generalized mixed equilibrium
problem is to find z ∈ C such that

f(z, y) + ⟨Az, y − z⟩+ φ(y)− φ(z) ≥ 0,∀y ∈ C. (1)

The set of solution of (1) is denoted
by GMEP (f, φ) ,i.e.

GMEP (f, φ) = {z ∈ C | f(z, y) + ⟨Az, y − z⟩+
φ(y)− φ(z) ≥ 0,∀y ∈ C}.

Special cases:
(I) If A = 0 ,then the problem (1) is equivalent to

find z ∈ C such that

f(z, y) + φ(y)− φ(z) ≥ 0, ∀y ∈ C. (2)

This is called the mixed equilibrium problem. The set
of solution of (2) is denoted by MEP (f, φ) .

(II) If f = 0 ,then the problem (1) is equivalent
to find z ∈ C such that

⟨Az, y − z⟩+ φ(y)− φ(z) ≥ 0,∀y ∈ C. (3)

This is called the mixed variational inequality of
Browder type. The set of solution of (3) is denoted

by V I(C,A, φ) . In particular, V I(C,A, 0) is de-
noted by V I(C,A) .

(III) If φ = 0 , then the problem (1) is equivalent
to find z ∈ C such that

f(z, y) + ⟨Az, y − z⟩ ≥ 0,∀y ∈ C. (4)

It is called the generalized equilibrium problem. The
set of solution of (4) is denoted by GEP (f) .

(IV) If A = 0, φ = 0 ,then the problem (1) is
equivalent to find z ∈ C such that

f(z, y) ≥ 0,∀y ∈ C. (5)

It is called the equilibrium problem. The set of solu-
tion of (5) is denoted by EP (f) .

An operator B : C → E∗ is called α-inverse-
strongly monotone, if there exists a positive real num-
ber α such that

⟨x− y,Bx−By⟩ ≥ α∥Bx−By∥2, ∀x, y ∈ C.

Obviously, if B is α -inverse-strongly monotone,
then B is 1

α -continuous. In this paper, we shall as-
sume that

(B1) B is α -inverse-strongly monotone;
(B2) V I(C,B) ̸= ∅ ;
(B3) ∥By∥ ≤ ∥By − Bu∥ for all y ∈ C and u ∈

V I(C,B) .
The generalized mixed equilibrium problems in-

clude fixed point problems, optimization problems,

WSEAS TRANSACTIONS on MATHEMATICS Ren-Xing Ni

E-ISSN: 2224-2880 296 Issue 3, Volume 12, March 2013



variational inequality problems, Nash equilibrium
problems and equilibrium problems as special cases
(see, for example,[1]). Some methods have been
proposed to solve the generalized mixed equilibrium
problem(see, for example,[1-5]).Numerous problems
in Physics, optimization and economics help to find a
solution of problem (5).

Recently, Petrot et al.[6] introduced the following
hybrid iterative scheme for approximation of a com-
mon fixed point of two relatively quasi-nonexpansive
mappings, which is also a solution to generalized
mixed equilibrium problem in a uniformly smooth and
uniformly convex real Banach space:

x0 ∈ C chosen arbitrariy,
yn = J−1(δnJxn + (1− δn)Jzn),
zn = J−1(αnJxn + βnJTxn + γnJSxn),
f(un, y) + ⟨Aun, y − un⟩+ φ(y)− φ(un)+

1
rn
⟨y − un, Jun − Jx⟩ ≥ 0,∀y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)},
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0},
xn+1 = ΠCn∩Qnx0.

They proved strong convergence theorem to a com-
mon element of set of common fixed points of S and
T and set of solutions to the generalized mixed equi-
librium problem.

Furthermore, Cholamjiak [7]introduced a hybrid
iterative scheme for approximation of a fixed point of
relatively quasi-nonexpansive mapping which is also
a solution to equilibrium problem and variational in-
equality problems in a 2-uniformly convex real Ba-
nach space, which is also uniformly smooth:

x0 ∈ C chosen arbitrariy,
C1 = C, x1 = ΠC1x0,
νn = ΠCJ

−1(Jxn − δnBxn),
yn = J−1(αnJxn + βnJTxn + γnJSνn),
f(un, y) +

1
rn
⟨y − un, Jun − Jyn⟩ ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
xn+1 = ΠCn+1x0.

Then, he proved that {xn} converges strongly
to ΠFx0 ,where F := F (T ) ∩ F (S) ∩ V I(C,B) ∩
EP (F ) ̸= ∅ .

In [8], Martinez-Yanes and Xu introduced the fol-
lowing iterative scheme for a single non-expansive
mapping T in a Hilbert space H :

x0 ∈ C,
yn = αnx0 + (1− αn)Txn,
Cn = {z ∈ C : ∥z − yn∥2 ≤ αn(∥x0∥2

+2⟨xn − x0, z⟩) + ∥z − xn∥2},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0

where PC denotes the metric projection of H onto
a closed and convex subset C of H . They proved
that if {αn} ⊂ (0, 1) and lim

n→∞
αn = 0 , then the

sequence {xn} converges strongly to PF (T )x0 .

In [9], Qin and Su extended the results of
Martinez-Yanes and Xu [8] from Hilbert spaces to Ba-
nach spaces and proved the following result: Let C be
a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex Banach space E and
let T : C → C be a relatively non-expansive map-
ping. Assume that {αn} ⊂ (0, 1) and lim

n→∞
αn = 0 .

Define a sequence {xn} in C by the following algo-
rithm:



x0 ∈ C,
yn = J−1(αnJx0 + (1− αn)JTxn),
Cn = {z ∈ C : ϕ(z, yn) ≤ ϕ(z, xn)},
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0},
xn+1 = ΠCn∩Qnx0, n ≥ 0.

If F (T ) is nonempty, then {xn} converges strongly
to ΠF (T )x0 .

In [10], Plubtieng and Ungchittrakool introduced
the following hybrid projection algorithm for a pair of
relatively nonexpansive mappings:



x0 ∈ C chosen arbitrariy,

zn = J−1(β
(1)
n Jxn + β

(2)
n JTxn

+β
(3)
n JSxn),

yn = J−1(αnJx0 + (1− αn)Jzn),
Cn = {z ∈ C : ϕ(z, yn) ≤ ϕ(z, xn)+

αn(∥x0∥2 + 2⟨Jxn − Jx0, z⟩)},
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0},
xn+1 = ΠCn∩Qnx0

(6)

where{αn},{β(i)
n },i=1,2,3, are sequences in (0, 1) sat-

isfying β
(1)
n + β

(2)
n + β

(3)
n = 1 and S and T are rel-

atively nonexpansive mappings. They proved under
the appropriate conditions on the parameters that the
sequence {xn} generated by (6) converges strongly to
a common fixed point of S and T .

2009, Qin et al. [11] introduced the following hy-
brid projection algorithm for two families of relatively
quasi-nonexpansive mappings, which are more gen-
eral than relatively nonexpansive mappings in a Ba-
nach space:
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

x0 ∈ C chosen arbitrariy,

zn,j = J−1(β
(1)
n,jJxn + β

(2)
n,jJTixn

+β
(3)
n,jJSixn),

yn,i = J−1(αn,iJx0 + (1− αn,i)Jzn,i),
Cn,i = {z ∈ C : ϕ(z, yn,i) ≤ ϕ(z, xn)

+αn,i(∥x0∥2 + 2⟨Jxn − Jx0, z⟩)},
Cn =

∞∩
i=1

Cn,i, Q0 = C,

Qn = {z ∈ Qn−1 : ⟨xn − z, Jx0
−Jxn⟩ ≥ 0},

xn+1 = ΠCn∩Qnx0.

(7)

They proved under appropriate conditions on the pa-
rameters that the sequence {xn} generated by (7) con-
verges strongly to a common fixed point of the two
families {Si} and {Ti} .

Recently, Wangkeeree and Wangkeeree[12] intro-
duced the following hybrid projection algorithm for
approximation of common fixed point of two families
of relatively quasi-non- expansive mappings, which is
also a solution to variational inequality problem in a
Banach space:

x0 ∈ C chosen arbitrariy,

C1,i = C,C1 =
∞∩
i=1

C1,i,

xi = ΠC1x0,
wn,i = ΠC1J

−1(Jxn − λn,iBxn),

zn,i = J−1(β
(1)
n,iJxn + β

(2)
n,iJTixn

+β
(3)
n,iJSiwn,i),

yn,i = J−1(αn,iJx0 + (1− αn,i)Jzn,i),
Cn,i = {z ∈ C : ϕ(z, yn,i) ≤ ϕ(z, xn)+

αn,i(∥x0∥2 + 2⟨Jxn − Jx0, z⟩)},
Cn+1 =

∞∩
i=1

Cn+1,i,

xn+1 = ΠCn+1x0.

(8)

They proved under appropriate conditions on the
parameters that the sequence {xn} generated by
(8) converges strongly to a common element of
the set of common fixed points of the two fami-
lies {Si} and {Ti} and set of solutions to a variational
inequality problem.

In 2009, Takahashi and Zembayashi [13] proved
strong and weak convergence theorems for finding a
common element of the set of solutions of an equilib-
rium problem and the set of fixed points of a relatively
nonexpansive mapping in a Banach space by using the
shrinking projection method.

Motivated by the above mentioned results and the
on-going research, we introduce a new hybrid pro-
jection algorithm based on the shrinking projection

method and prove strong convergence theorem for ap-
proximation of a common element of the set of com-
mon fixed point of an infinite family of asymptotically
quasi-ϕ-nonexpansive mappings, set of solutions to a
variational inequality problem and the set of solutions
to system of generalized mixed equilibrium problems
in a 2-uniformly convex real Banach space which is
also uniformly smooth. Our results extend the results
of Martinez-Yanes and Xu[8], Plubtieng and Ung-
chittrakool [10], Takahashi and Zembayashi [13] and
many other recent and important results in the litera-
ture.

2 Preliminaries
Throughout this paper, we denote by N and R the
sets of nonnegative integers and real numbers, respec-
tively. Let E be a Banach space and let E∗ be the
topological dual of .For all x ∈ E and x∗ ∈ E∗ ,
we denote the value of x∗ at x by ⟨x, x∗⟩ .The duality
mapping J : E → 2E

∗
is defined by

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}.

It is well known that if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on each
bounded subset of E .Now, let E be a smooth Banach
space, we use ϕ : E×E → R to denote the Lyapunov
functional defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀x, y ∈ E.

It is obvious from the definition of ϕ that

(A1)(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2.

Following Alber [14], the generalized projection ΠC :
E → C is defined by

ΠCx = argmin
y∈C

ϕ(y, x), ∀x ∈ C.

If E is a Hilbert space H , then ϕ(y, x) =
∥y − x∥2, x, y ∈ H and ΠC is the metric projec-
tion PC of E onto C .

Let C be a nonempty closed convex subset
of E and T be a mapping from C into itself. We
denoted F (T ) by the set of fixed points of T . A
point p ∈ C is said to be an asymptotic fixed point
of T [15] if C contains a sequence {xn} which con-
verges weakly to p such that lim

n→∞
∥xn − Txn∥ = 0 .

The set of asymptotic fixed points of T is denoted
by

−−−→
F (T ) . A mapping T from C into itself is said to be

relatively nonexpansive [15,16] if
−−−→
F (T ) = F (T ) ̸=

∅ , and ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ C and p ∈
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F (T ) . T is said to be quasi-ϕ-nonexpansive [16-
18]if F (T ) ̸= ∅ and ϕ(p, Tx) ≤ ϕ(p, x) for
all x ∈ C and p ∈ F (T ) . The mapping T is
said to be asymptotically-ϕ-nonexpansive if there ex-
ists a sequence {kn} ⊂ [1,+∞] with lim

n→+∞
kn =

1 such that ϕ(Tnx, Tny) ≤ knϕ(x, y) for all x, y ∈
C . T is said to be asymptotically quasi-ϕ-
nonexpansive [17,18] if F (T ) ̸= ∅ and there exists a
sequence {kn} ⊂ [1,+∞] with lim

n→+∞
kn = 1 such

that ϕ(p, Tnx) ≤ knϕ(p, x) for all x ∈ C, p ∈
F (T ) and n ≥ 1 .

The class of (asymptotically) quasi-ϕ-
nonexpansive mappings is more general than
that of relatively nonexpansive mappings which
requires the restriction:

−−−→
F (T ) = F (T ) . A quasi-ϕ-

nonexpansive mapping with a nonempty fixed point
set F (T ) is an asymptotically quasi-ϕ-nonexpansive
mapping, but the converse may not be true.In
the framework of Hilbert spaces,(asymptotically)
quasi-ϕ-nonexpansive mappings is reduced to
(asymptotically) quasi-nonexpansive mappings.

It is well-known that the following conclusions
hold:

Lemma 1 [16] Let E be uniformly convex and
smooth Banach space. Let {yn} and {zn} be se-
quences in E such that either {yn} or {zn} is
bounded. If lim

n→+∞
ϕ(yn, zn) = 0 ,then lim

n→+∞
∥yn −

zn∥ = 0 .

Lemma 2 [14] Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Ba-
nach space E , x ∈ E and x0 ∈ C .Then, x0 = ΠCx if
and only if ⟨x0 − y, Jx− Jx0⟩ ≥ 0 , ∀y ∈ C .

Lemma 3 [14] Let C be a nonempty closed convex
subset of reflexive, strictly convex and smooth Banach
space E and x ∈ E , Then

ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x),∀y ∈ C.

Lemma 4 [18] Let E be a nonempty closed con-
vex subset of uniformly convex and smooth Banach
space E .Let T : C → C be a closed and asymptot-
ically quasi-ϕ-non-expansive mapping. Then F (T ) is
a closed convex subset of C .

Lemma 5 [18] Let E be a uniformly convex Banach
space, r > 0 be a positive number and Br(0) = {x ∈
E : ∥x∥ ≤ r} . Then for any given infinite sub-
set {xn} ⊂ Br(0) and for any given sequence {λn} of

positive numbers with
+∞∑
n=1

λn = 1 ,there exists a con-

tinuous, strictly increasing and convex function g :

[0, 2r) → [0,∞) with g(0) = 0 such that for
any i, j ∈ N with i < j .

∥
+∞∑
n=1

λnxn∥2 ≤
+∞∑
n=1

λn∥xn∥2 − λiλjg(∥xi − xj∥).

For solving the equilibrium problem for bifunc-
tion f : C ×C → R ,let us assume that f satisfies the
following conditions:

(C1) f(x, x) = 0, ∀x ∈ C
(C2) f is monotone,i.e. f(x, y) + f(y, x) ≤

0,∀x, y ∈ C
(C3) ∀x, y, z ∈ C, lim sup

t↓0
f(tz + (1− t)x, y) ≤

f(x, y)
(C4) ∀x ∈ C, y 7→ f(x, y) is a convex and lower

semicontinuous.
If a bifunction f : C × C → R satisfies

conditions(C1)-(C4), then we have the following two
important results.

Lemma 6 [18] Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Ba-
nach spaces E , let f : C × C → R be a bifunc-
tion satisfying conditions (C1)-(C4), φ : C → R be
a lower semicontinuous and convex functional, A :
C → E∗ be a continuous and monotone mapping.
For r > 0 and x ∈ E ,define a mapping TG

r : E →
C as follows:

TG
r x = {z ∈ E : f(x, y) + φ(y)− φ(x)

+⟨Az, y − z⟩+ 1

r
⟨y − z, Jz − Jx⟩, ∀y ∈ C}.

Where G(x, y) = f(x, y) + φ(y)− φ(x) + ⟨Ax, y −
x⟩, ∀x, y ∈ C. Then, the following holds:

(1) TG
r is single-valued;

(2) F (TG
r ) = GMEP (f, φ) ;

(3) TG
r is quasi-ϕ-nonexpansive;

(4) GMEP (f, φ) is closed and convex.

Lemma 7 [14] Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Ba-
nach spaces E , let f : C × C → R be a bifunction
satisfying conditions(C1)-(C4), and let r > 0 . Then,
for x ∈ E and q ∈ F (T f

r ) ,

ϕ(q, T f
r x) + ϕ(T f

r x, x) ≤ ϕ(q, x).

The function V as studied by Alber
[14]: V (x, x∗) = ∥x2∥ − 2⟨x, x∗⟩ + ∥x∗∥2 for
all x ∈ E and x∗ ∈ E∗ .Thus, V (x, x∗) =
ϕ(x, J−1(x∗)) .

Lemma 8 [14] Let E be a reflexive strictly convex
Banach space. Then

V (x, x∗) + 2⟨J−1(x∗)− x, y∗⟩ ≤ V (x, x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗ .
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Lemma 9 [19] Let E be a 2-uniformly convex Ba-
nach space, then there exists a constant c > 0 such
that for all x, y ∈ E and jx ∈ Jx, jy ∈ Jy ,we have

⟨x− y, jx− jy⟩ ≥ c∥x− y∥2.

where 1
c is the 2-uniformly convexity constant.

3 Main results
Theorem 10 Let C be a nonempty closed con-
vex subset of 2-uniformly convex and uniformly
smooth Banach space E .Suppose B : C →
E∗ is an operator satisfying(B1)-(B3).For each k =
1, 2, · · · ,m ,let Ak : C → E∗ be a continu-
ous and monotone mapping, φk : C → R be a
lower semi-continuous and convex functional, let fk :
C × C → R be a bifunction satisfying(C1)-
(C4)and Ti : C → C, ∀i ∈ N be an in-
finite family of closed and asymptotically quasi-ϕ-
nonexpansive mapping with sequence {k(i)n } ⊆
[1,+∞), lim

n→+∞
k
(i)
n = 1 ,where T0 = I .As-

sume that Ti, ∀i ∈ N is asymptotically regular
on C , i.e., lim

n→+∞
∥Tn+1

i xn − Tn
i xn∥ = 0 andF =

[
+∞∩
i=0

F (Ti)]
∩
[
m∩
k=1

GMEP (fk, φk)]
∩
V I(C,B) ̸=

∅. Let xn be a sequence generated by

x0 ∈ C chosen arbitrariy,
yn = J−1(αnJΠCJ

−1(Jxn − λnBxn)+
(1− αn)Jzn),

zn = J−1(
+∞∑
i=0

β
(i)
n JTn

i xn),

un = TGm
rm,n

T
Gm−1
rm−1,n · · ·TG2

r2,nT
G1
r1,nyn,

Cn = {z ∈ C : ϕ(z, un) ≤ (1− αn)ϕ(z, zn)
+αnϕ(z, xn) ≤ ϕ(z, xn)
+(kn − 1)Mn},

Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0},
xn+1 = ΠCn∩Qnx0

(9)

where Mn = sup{ϕ(z, xn)|z ∈ F} <

+∞ for each n ≥ 0, kn = sup
i≥0

{k(i)n }, {λn} ⊂

[a, b] ,for some a, b with 0 < a < b <
cα, where 1

c is 2-uniformly convexity constant of E ,
for each k = 1, 2, · · · ,m, {rk,n}+∞

n=1 ⊂ (0,+∞) sat-
isfying lim inf

n→+∞
rk,n > 0 , for all z, y ∈ C , Gk(z, y) =

fk(z, y)+φk(y)−φk(z)+ ⟨Akz, y− z⟩ , TGk
rk,n

(x) =

{z ∈ C : Gk(z, y) + 1
rk,n

⟨y − z, Jz − Jx⟩ ≥

0,∀y ∈ C} , {αn}, {β(i)
n }, i ∈ N are real se-

quences in [0, 1] satisfies the conditions: ∀n ≥ 1, 0 ≤

β
(i)
n ≤ 1,

∞∑
i=0

β
(i)
n = 1, lim inf

n→∞
(1 − αn)β

(0)
n β

(i)
n >

0,∀i ∈ N .Then the sequence {xn} converges
strongly to ΠFx0 .

Proof: We define a bifunction Gk : C × C → R by

Gk(x, y) = fk(x, y)+φk(y)−φk(x)+⟨Akx, y−x⟩,

∀x, y ∈ C .Then, we prove from Lemma 6 that
the bifunction Gk satisfies conditions(C1)-(C4)for
each k = 1, 2, · · · ,m . Therefore, the generalized
mixed equilibrium problem (1) is equivalent to the fol-
lowing equilibrium problem: find x ∈ C such that

Gk(x, y) ≥ 0,∀y ∈ C.

Hence GMEP (fk, φk) = EP (Gk) , By taking θkn =

TGk
rk,n

T
Gk−1
rk−1,n · · ·TG2

r2,nT
G1
r1,n, k = 1, 2, · · · ,m and θ0n =

I for all n ≥ 1 ,we obtain un = θmn yn .Let tn =
J−1(Jxn−λnBxn) .We divide the proof of Theorem
1 into five steps:

Step 1 We first show that Cn and Qn are closed and
convex for each n ≥ 0 .

In fact,for z ∈ Cm ,we see that

ϕ(z, um) ≤ αnϕ(z, xm) + (1− αm)ϕ(z, zm)

≤ ϕ(z, xm) + (km − 1)Mm

is equivalent to

2⟨z, αmJxm + (1− αm)Jzm − Jum⟩
≤ αm∥xm∥2 + (1− αm)∥zm∥2 − ∥um∥2

and

2(1− αm)⟨z, Jxm − Jzm⟩
≤ (1− αm)(∥xm∥2 − ∥zm∥2) + (kn − 1)Mn.

The last two inequalities are the affine with respect
to z ,so Cn is closed and convex. From the definition
of Qn ,we may obtain that Qn is closed and convex
for each n ≥ 0 .

Step 2 Next, we show that F ⊂ Cn
∩
Qn for

each n ≥ 0 .
First we show that F ⊂ Cn for each n ≥ 0 .
In fact, by the definition of ϕ(·, ·) and (9), for

each p ⊂ F , we obtain

ϕ(p, zn) = ϕ(p, J−1(
+∞∑
i=0

β(i)
n JTn

i xn))

= ∥p∥2 − 2⟨p,
+∞∑
i=0

β(i)
n JTn

i xn⟩
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+ ∥J−1(
+∞∑
i=0

β(i)
n JTn

i xn)∥2

≤ ∥p∥2 − 2
+∞∑
i=0

β(i)
n ⟨p, JTn

i xn⟩+
+∞∑
i=0

β(i)
n ∥Tn

i xn∥2

=
+∞∑
i=0

β(i)
n ϕ(p, Tn

i xn)

≤
+∞∑
i=0

β(i)
n k(i)n ϕ(p, xn)

=
+∞∑
i=0

β(i)
n [1 + (k(i)n − 1)]ϕ(p, xn)

= ϕ(p, xn) +
+∞∑
i=0

β(i)
n (k(i)n − 1)ϕ(p, xn)

≤ ϕ(p, xn) + (kn − 1)Mn. (10)

Observe that p ⊂ F implies p ⊂ C , by Lemma 3,
Lemma 8 and (9), for all p ⊂ C , we have

ϕ(xn,ΠCtn) ≤ ϕ(xn, tn)− ϕ(ΠCtn, tn)

≤ ϕ(p, tn) = V (p, Jxn − λnBxn)

≤ V (p, (Jxn − λnBxn) + λnBxn)

−2⟨J−1(Jxn − λnBxn)− p, λnBxn⟩
= V (p, Jxn)− 2λn⟨tn − p,Bxn⟩
= ϕ(p, xn)− 2λn⟨xn − p,Bxn⟩
+ 2⟨tn − xn,−λnBxn⟩. (11)

From condition (B1) and p ∈ V I(C,B) , we obtain

−2λn⟨xn − p,Bxn⟩
= −2λn⟨xn − p,Bxn −Bp⟩ − 2λn⟨xn − p,Bp⟩
≤ −2λnα∥Bxn −Bp∥2. (12)

By Lemma 9 and condition (B1), we also obtain

2⟨tn − xn,−λnBxn⟩ ≤ 2∥tn − xn∥ · λn∥Bxn∥

≤ 2

c
∥Jtn − Jxn∥ · λn∥Bxn∥

=
2

c
λ2
n · ∥Bxn∥2 ≤

2

c
λ2
n · ∥Bxn −Bp∥2. (13)

Combining (11)-(13) and 0 < b < cα ,we obtain

ϕ(p,ΠCtn) ≤ ϕ(p, tn)

≤ ϕ(p, xn) + 2λn(
b

c
− α) · ∥Bxn −Bp∥2

≤ ϕ(p, xn). (14)

Thus, by (9), (10), (14), Lemma7, Lemma6 and
the fact that TGk

rk,n
(k = 1, 2, · · · ,m) is quasi-ϕ-

nonexpansive mapping, for each p ⊂ F , we obtain

ϕ(p, un) = ϕ(p, θmn yn)

≤ ϕ(p, yn)

= ϕ(p, J−1(αnJΠCtn + (1− αn)Jzn))

= ∥p∥2 − 2⟨p, αnJΠCtn + (1− αn)Jzn⟩
+ ∥J−1(αnJΠCtn + (1− αn)Jzn)∥2

= ∥p∥2 − 2αn⟨p, JΠCtn⟩ − 2(1− αn)⟨p, Jzn⟩
+ ∥αnJΠCtn + (1− αn)Jzn∥2

≤ ∥p∥2 − 2αn⟨p, JΠCtn⟩ − 2(1− αn)⟨p, Jzn⟩
+ αn∥ΠCtn∥2 + (1− αn)∥zn∥2

= αn(∥p∥2 − 2⟨p, JΠCtn⟩+ ∥ΠCtn∥2)
+ (1− αn)(∥p∥2 − 2⟨p, Jzn⟩+ ∥zn∥2)
= αnϕ(p,ΠCtn) + (1− αn)ϕ(p, zn)

≤ αnϕ(p, xn) + (1− αn)ϕ(p, zn)

≤ αnϕ(p, xn) + (1− αn)[ϕ(p, xn)

+ (kn − 1)Mn]

≤ ϕ(p, xn) + (kn − 1)Mn. (15)

So, p ⊂ Cn .This implies that F ⊂ Cn, ∀n ≥ 0 .

Second we show that F ⊂ Qn for each n ≥ 0 .
In fact, for n = 0, F ⊂ C = Q0 is obvious. Suppose
that F ⊂ Qn for some positive integer n , it follows
from xn+1 = ΠCn∩Qnx0 and Lemma2 that

⟨xn+1 − z, Jx0 − Jxn+1⟩ ≥ 0,∀z ∈ Cn ∩Qn.

From F ⊂ Qn , we obtain F ⊂ Cn ∩ Qn .In par-
ticular, for all z ⊂ F , the last inequality should be
held. Combining the definition of Qn+1 , we obtain
that F ⊂ Qn+1 .So we have that F ⊂ Cn ∩Qn, ∀n ≥
0 .

Step 3 Now,we show that {xn} is Cauchy sequence.
In fact, by the construction of Qn and Lemma

2, we have that xn = ΠQnx0 , it then follows from
Lemma 3 that

ϕ(xn, x0) = ϕ(ΠQnx0, x0)

≤ ϕ(p, x0)− ϕ(p, xn)

≤ ϕ(p, x0).

for each p ∈ F ⊂ Qn,∀n ≥ 0 .Hence, the se-
quence ϕ(xn, x0) is bounded.

Combining xn+1 = ΠCn∩Qnx0 ∈ Qn and
Lemma 3, we obtain

0 ≤ ϕ(xn, xn+1) ≤ ϕ(xn, x0)− ϕ(xn−1, x0).

for all n ≥ 0 .Thus, the sequence ϕ(xn, x0) is
nondecreasing. It follows from the boundedness
of ϕ(xn, x0) that the limit of ϕ(xn, x0) exists.

For any positive integer m , it then follows from
Lemma 3 that

ϕ(xn+m, xn) = ϕ(xn+m,ΠQnx0)

≤ ϕ(xn+m, x0)− ϕ(ΠQnx0, x0)

= ϕ(xn+m, x0)− ϕ(xn, x0). (16)
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it follows from (16) that ϕ(xn+m, x0) → 0 as m,n →
∞ . we have from (A1) and the boundedness
of ϕ(xn, x0) that {xn} is bounded, combining Lemma
1, we obtain

xn+m − xn → 0,m, n → ∞.

Hence, the sequence {xn} is Cauchy in C . Since E is
a Banach space and C is closed convex, then there
exists p ∈ C such that xn → p as n → ∞ . Now,
since ϕ(xn+m, x0) → 0 as m,n → ∞ ,we have in
particular that lim

n→∞
ϕ(xn+1, xn) = 0 and this further

implies that lim
n→∞

∥xn+1 − xn∥ = 0 .
Since xn+1 = ΠCn∩Qnx0 ∈ Cn , we have

0 ≤ ϕ(xn+1, un) ≤ ϕ(xn+1, xn)

+ (kn − 1)Mn → 0, n → ∞.

From Lemma 1, we obtain that

lim
n→∞

∥xn+1 − un∥ = 0.

Therefore

∥xn − un∥ ≤ ∥xn − xn+1∥
+ ∥xn+1 − un∥ → 0. (17)

It follows from lim
n→+∞

∥xn − p∥ = 0 and (17) that

un → p, n → ∞. (18)

Step 4 Now we prove that

p ∈ [
+∞∩
i=0

F (Ti)]
∩

[
m∩
k=1

GMEP (fk, φk)]
∩

V I(C,B).

(a) First we prove that p ∈
+∞∩
i=0

F (Ti) .

Since E is uniformly smooth space, we have
that J is uniformly norm-norm continuous on any
bounded sets and (17),we obtain

lim
n→∞

∥Jxn − Jun∥ = 0. (19)

It follows from the boundedness of the se-
quences {xn}and{kn}, ϕ(p, Tn

i xn) ≤ knϕ(p, xn) for
eachp ∈ F andi ∈ N that the sequences {JTn

i xn} are
bounded. Thus there exists r > 0 such
that {JTn

i xn} ⊂ Br(0). For each p ∈ F , we have
from Lemma 5, Lemma 6, Lemma 7 and (14) that

ϕ(p, un) = ϕ(p, θmn yn)

≤ ϕ(p, yn)

= ϕ(p, J−1(αnJΠCtn + (1− αn)Jzn))

≤ αnϕ(p,ΠCtn) + (1− αn)ϕ(p, zn)

= αnϕ(p,ΠCtn) + (1− αn) · (∥p∥2

− 2⟨p,
+∞∑
i=0

β(i)
n JTn

i xn⟩+ ∥
+∞∑
i=0

β(i)
n JTn

i xn∥2)

≤ αnϕ(p,ΠCtn) + (1− αn) ·

(∥p∥2 − 2
+∞∑
i=0

β(i)
n ⟨p, JTn

i xn⟩

+
+∞∑
i=0

β(i)
n ∥JTn

i xn∥2)

− β(0)
n β(i)

n g(∥JTn
0 xn − JTn

i xn∥))

= αnϕ(p,ΠCtn) + (1− αn) · (
+∞∑
i=0

β(i)
n ϕ(p, Tn

i xn)

− β(0)
n β(i)

n g(∥JTn
0 xn − JTn

i xn∥))
≤ αnϕ(p, xn) + (1− αn)

· (
+∞∑
i=0

β(i)
n [1 + (k(i)n − 1)]ϕ(p, xn)

− β(0)
n β(i)

n g(∥JTn
0 xn − JTn

i xn∥))
≤ αnϕ(p, xn) + (1− αn)ϕ(p, xn) + (kn − 1)Mn

− (1− αn)β
(0)
n β(i)

n g(∥JTn
0 xn − JTn

i xn∥)
= ϕ(p, xn) + (kn − 1)Mn

− (1− αn)β
(0)
n β(i)

n g(∥JTn
0 xn − JTn

i xn∥).

This implies that

0 ≤ (1− αn)β
(0)
n β(i)

n g(∥JTn
0 xn − JTn

i xn∥)
≤ ϕ(p, xn)− ϕ(p, un) + (kn − 1)Mn

(20)

On the other hand, we have

ϕ(p, xn)− ϕ(p, un)

= ∥xn∥2 − ∥un∥2 − 2⟨p, Jxn − Jun⟩
≤ ∥xn − un∥ · (∥xn∥+ ∥un∥)
+ 2∥p∥ · ∥Jxn − Jun∥.

In view of (17) and (19), we obtain

ϕ(p, xn)− ϕ(p, un) → 0, n → ∞. (21)

Combining(20)-(21), lim
n→+∞

(kn − 1)Mn = 0, T0 =

I and the assumption lim
n→∞

(1 − αn)β
(0)
n β

(i)
n > 0 ,we

have

g(∥Jxn − JTn
i xn∥) → 0, n → ∞.

It follows from the property of g that

lim
n→+∞

∥Jxn − JTn
i xn∥ = 0 (22)
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Since xn → p as n → ∞ and J is uniformly norm-
norm continuous on any bounded sets, we obtain that.

∥Jxn − Jp∥ → 0, n → ∞. (23)

Note that

∥JTn
i xn − Jp∥ ≤ ∥Jxn − JTn

i xn∥
+ ∥Jxn − Jp∥.

From (22) and (23), we see that

lim
n→+∞

∥JTn
i xn − Jp∥ = 0. (24)

Note that J−1 is also uniformly norm-norm continu-
ous on any bounded sets. It follows from (24) that

lim
n→+∞

∥Tn
i xn − p∥ = 0. (25)

Note that ∥Tn+1
i xn − p∥ ≤ ∥Tn+1

i xn − Tn
i xn∥ +

∥Tn
i xn − p∥ , the asymptotic regularity of T and

(25), we have lim
n→+∞

∥Tn+1
i xn − p∥ = 0 .That

is, Ti(T
n
i xn) → p as n → ∞ ,it follows from the

closeness of Ti that Tip = p, ∀i ∈ N , i.e. p ∈
+∞∩
i=0

F (Ti) .

(b) Now we prove that

p ∈
m∩
k=1

GMEP (fk, φk) =
m∩
k=1

EP (Gk).

In fact, in view of un = θmn yn ,(15) and Lemma
7, for each q ∈ F (θkn) ,we have

0 ≤ ϕ(un, yn) = ϕ(θmn yn, yn)

≤ ϕ(p, yn)− ϕ(p, θmn yn)

≤ ϕ(p, xn)− ϕ(p, un) + (kn − 1)Mn.

It follows from (21) and lim
n→+∞

(kn − 1)Mn =

0 that ϕ(un, yn) → 0 as n → ∞ .Using Lemma 1,
we see that ∥un − yn∥ → 0 as n → ∞ .Further-
more, ∥xn − yn∥ ≤ ∥xn − un∥ + ∥un − yn∥ →
0 as n → ∞ .Since xn → p, n → ∞ and ∥xn−yn∥ →
0, n → ∞ ,then yn → p, n → ∞ . By the fact
that θkn, k = 1, 2, · · · ,m is relatively nonexpansive
and using Lemma7 again, we have that

0 ≤ ϕ(θknyn, yn)

≤ ϕ(p, yn)− ϕ(p, θknyn)

≤ ϕ(p, xn)− ϕ(p, θknyn) + (kn − 1)Mn.(26)

Observe that

ϕ(p, un) = ϕ(p, θknyn)

= ϕ(p, TGm
rm,n

TGm−1
rm−1,n

· · ·TG2
r2,nT

G1
r1,nyn)

= ϕ(p, TGm
rm,n

TGm−1
rm−1,n

· · · θknyn)

≤ ϕ(p, θknyn). (27)

Using (27) in (26), we obtain that

0 ≤ ϕ(θknyn, yn) ≤ ϕ(p, xn)− ϕ(p, un)

+(kn − 1)Mn → 0, n → ∞.

Then Lemma 1 implies that lim
n→∞

∥θknyn − yn∥ =

0, k = 1, 2, · · · ,m .Now

∥θknyn − p∥ ≤ ∥θknyn − yn∥+ ∥yn − p∥
→ 0, n → ∞, k = 1, 2, · · · ,m.

Similarly, lim
n→+∞

∥θk−1
n yn − p∥ = 0 , k =

1, 2, · · · ,m .This further implies that

lim
n→+∞

∥θk−1
n yn − θknyn∥ = 0. (28)

Also, since J is uniformly norm-norm continu-
ous on any bounded sets and using (28), we ob-
tain that lim

n→+∞
∥Jθk−1

n yn − Jθknyn∥ = 0. .From

the assumption {rk,n}+∞
n=1 ⊂ (0,+∞) satisfying

lim inf
n→+∞

rk,n > 0 for each k = 1, 2, · · · ,m ,we see

that

lim
n→+∞

∥Jθk−1
n yn − Jθknyn∥

rk,n
= 0. (29)

By Lemma 6, we have that for each k = 1, 2, · · · ,m ,

1

rk,n
⟨y − θknyn, Jθ

k
nyn − Jθk−1

n yn⟩

+Gk(θ
k
nyn, y) ≥ 0,∀y ∈ C.

Furthermore, replacing n by nj in the last inequality
and using condition (C2), we obtain

∥y − θknj
ynj∥ ·

∥Jθknj
ynj − Jθk−1

nj
ynj∥

rk,nj

≥ 1

rk,nj

⟨y − θknj
ynj , Jθ

k
nj
ynj − Jθk−1

nj
ynj ⟩

≥ −Gk(θ
k
nj
ynj , y) ≥ Gk(y, θ

k
nj
ynj ),∀y ∈ C.

By taking the limit as j → +∞ in the above inequal-
ity, for each k = 1, 2, · · · ,m we have from the condi-
tion(C4),(29)and θknj

ynj → p that Gk(y, p) ≤ 0, ∀y ∈
C .
For 0 < t ≤ 1 and y ∈ C , define yt = ty+ (1− t)p .
It follows from y, p ∈ C that yt ∈ C which yields
that Gk(yt, p) ≤ 0 . It follows from the conditions
(C1) and (C4) that

0 = Gk(yt, yt)

≤ tGk(yt, y) + (1− t)Gk(yt, p)

≤ tGk(yt, y).
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That is

Gk(yt, y) ≥ 0.

Let t → 0+ , from the condition(C3), then we obtain
that Gk(p, y) ≥ 0,∀y ∈ C .This implies that p ∈
m∩
k=1

EP (Gk), k = 1, 2, · · · ,m , i.e.

p ∈
m∩
k=1

GMEP (fk, φk) =
m∩
k=1

EP (Gk).

(c) Next we prove that lim
n→∞

∥xn −ΠCtn∥ = 0 .
In fact, it follows from Lemma 3, Lemma 8, (13),

(17), (18) and 1
α− Lipschitzian of B that

ϕ(xn,ΠCtn) ≤ ϕ(xn, tn)− ϕ(ΠCtn, tn)

≤ ϕ(xn, tn) = V (xn, Jxn − λnBxn)

≤ V (xn, Jxn − λnBxn + λnBxn)

−2⟨J−1(Jxn − λnBxn)− xn, λnBxn⟩
= ϕ(xn, xn)− 2⟨tn − xn, λnBxn⟩

= −2⟨tn − xn, λnBxn⟩ ≤
2

c
λ2
n∥Bxn −Bp∥2

≤ 2

cα2
λ2
n∥xn − p∥2 → 0(n → ∞).

So, from Lemma 1, we have lim
n→∞

ϕ(xn,ΠCtn) =

0 which implies that

lim
n→∞

∥xn −ΠCtn∥ = 0. (30)

Thus, by the uniform continuity on any bounded sets
of J , we obtain that

lim
n→∞

∥Jxn − JΠCtn∥ = 0. (31)

(d) Now we prove that p ∈ V I(C,B) .
Define D : E → 2E

∗
as follows:

Dv =

{
Bv +NC(v), v ∈ C,
∅, v ̸∈ C.

where NC(v) = {w ∈ E : ⟨v − u,w⟩ ≥ 0, ∀u ∈
C} is the normal cone to C at v ∈ C . Then
the multi-valued mapping D is maximal monotone
and D−10 = V I(C,B) . Let G(D) denote the graph
of D and let (v, w) ∈ G(D) ,then we have w ∈ Dv =
Bv+NC(v) and hence w−Bv ∈ NC(v) .Therefore,
by ΠCtn ∈ C ,we have

⟨v −ΠCtn, w −Bv⟩ ≥ 0. (32)

On the other hand, it follows from Lemma 2 that

⟨v −ΠCtn, JΠCtn − Jtn⟩ ≥ 0.

That is

⟨v −ΠCtn,
Jxn − JΠCtn

λn
−Bxn⟩ ≤ 0.(33)

It follows from (32) and (33) that

⟨v −ΠCtn, w⟩ ≥ ⟨v −ΠCtn, Bv⟩
≥ ⟨v −ΠCtn, Bv⟩

+ ⟨v −ΠCtn,
Jxn − JΠCtn

λn
−Bxn⟩

= ⟨v −ΠCtn, Bv −BΠCtn⟩
+ ⟨v −ΠCtn, BΠCtn −Bxn⟩

+ ⟨v −ΠCtn,
Jxn − JΠCtn

λn
⟩

≥ −∥v −ΠCtn∥ ·
∥ΠCtn − xn∥

α

− ∥v −ΠCtn∥ ·
∥JΠCtn − Jxn∥

a

≥ −M(
∥ΠCtn − xn∥

α
+

∥JΠCtn − Jxn∥
a

).

Where M = sup{∥v − ΠCtn∥, n ∈ N} , letting n =
nk and k → +∞ , using (17),(18),(30) and (31), we
obtain that ⟨v−p, w⟩ ≥ 0 . Since D is maximal mono-
tone, we have p ∈ D−10 and hence p ∈ V I(C,B) .
Thus we have p ∈ F .

Step 5 Finally, we prove that p = ΠFx0 .
From Lemma 2 and the definition of Qn , we see

that xn = ΠQnx0 and ⟨xn−z, Jx0−Jxn⟩ ≥ 0,∀z ∈
Qn .Since F ⊂ Qn for each n ≥ 0 , we have

⟨xn − w, Jx0 − Jxn⟩ ≥ 0, ∀w ∈ F.

Let n → +∞ in the last inequality, we see
that ⟨p − w, Jx0 − Jp⟩ ≥ 0, ∀w ∈ F. In view of
Lemma 2, we can obtain that p = ΠFx0 . This com-
pletes the proof of Theorem 10.

In the spirit of Theorem 10, we can prove the fol-
lowing strong convergence theorem.

Theorem 11 Let C be a nonempty closed convex sub-
set of a 2-uniformly convex and uniformly smooth
Banach space E . Suppose B : C → E∗ is
an operator satisfying(B1)-(B3). For each k =
1, 2, · · · ,m ,let Ak : C → E∗ be a continuous and
monotone mapping, φk : C → R be a lower semi-
continuous and convex functional, let fk : C × C →
R be a bifunction satisfying(C1)-(C4)and Ti : C →
C, ∀i ∈ N be an infinite family of closed and quasi-
ϕ-nonexpansive mapping, where

F = [
+∞∩
i=0

F (Ti)]
∩

[
m∩
k=1

GMEP (fk, φk)]
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∩
V I(C,B) ̸= ∅,

T0 = I .Let {xn} be a sequence generated by

x0 ∈ C chosen arbitrariy,
yn = J−1(αnJΠCJ

−1(Jxn − λnBxn)+
(1− αn)Jzn),

yn = J−1(
+∞∑
i=0

β
(i)
n JTixn),

un = TGm
rm,n

T
Gm−1
rm−1,n · · ·TG2

r2,nT
G1
r1,nyn,

Cn = {z ∈ C : ϕ(z, un) ≤ (1− αn)ϕ(z, zn)+
αnϕ(z, xn) ≤ ϕ(z, xn)},

Qn = {z ∈ C : ⟨xn − z, Jxn − Jx0⟩ ≥ 0},
xn+1 = ΠCn

∩
Qn

(x0)

(34)

where λn ⊂ [a, b] for some a, b with 0 < a < b < cα ,
where 1

c is 2-uniformly convexity constant of E , for
each k = 1, 2, · · · ,m, {rk,n}+∞

n=1 ⊂ (0,+∞) satisfy-
ing lim inf

n→+∞
rk,n > 0 ,

TGk
rk,n

(x) = {z ∈ C :
1

rk,n
⟨y − z, Jz − Jx⟩+

Gk(z, y) ≥ 0, ∀y ∈ C},

{αn}, {β(i)
n }, i ∈ N are real sequences in [0,1]

satisfies the conditions: ∀n ≥ 1, 0 ≤ β
(i)
n ≤

1,
∞∑
i=0

β
(i)
n = 1, lim inf

n→∞
(1 − αn)β

(0)
n β

(i)
n > 0,∀i ∈

N .Where Gk(z, y) = fk(z, y) + φk(y) − φk(z) +
⟨Akz, y−z⟩,∀z, y ∈ C .Then the sequence {xn} con-
verges strongly to ΠFx0 .

Remark 12 Theorem 11 improves Theorem 3.1 of
Takahashi and Zembayashi [13] in the following as-
pects:

(a) From a relatively nonexpansive mapping to an
infinite family of quasi-ϕ-nonexpansive mapping.

(b) Considering the variational inequality prob-
lem from zero to one.

(c) From an equilibrium problem to a system of
generalized mixed equilibrium problem.

Remark 13 It is worth pointing out that Theorem3.1
and Theorem3.2 of Yang, Zhao and Kim[18] need to
be held in the framework of the uniformly smooth and
uniformly convex real Banach space. Since, the proofs
of Theorem 3.1 and Theorem 3.2 in [18] make use
of Lemma 5, but Lemma 5 holds under the uniformly
convex space.
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