Strong Convergence of a Hybrid Projection Algorithm for Approximation of a Common Element of Three Sets in Banach Spaces

REN-XING NI
Shaoxing University
Department of Mathematics
Huancheng West Road No 5, 312000 Shaoxing
P. R. CHINA
nrx64@yahoo.com.cn

Abstract

In this paper, we construct a new iterative scheme by hybrid projection method and prove strong convergence theorems for approximation of a common element of set of common fixed points of an infinite family of asymptotically quasi- ϕ-nonexpansive mappings, set of solutions to a variational inequality problem and set of common solutions to a system of generalized mixed equilibrium problems in a uniformly smooth and 2-uniformly convex real Banach space. Our results extend many important recent results in the literature.

Key-Words: Asymptotically quasi- ϕ-nonexpansive mapping; Generalized mixed equilibrium problem; Uniformly smooth; 2-Uniformly convex; Hybrid projection method; Banach space

1 Introduction

Let C be a closed convex subsets of Banach space E. Let f be a bifunction from $C \times C$ to $R, \varphi: C \rightarrow$ R be mapping and $A: C \rightarrow E^{*}$ be a nonlinear mapping. The"so-called" generalized mixed equilibrium problem is to find $z \in C$ such that
$f(z, y)+\langle A z, y-z\rangle+\varphi(y)-\varphi(z) \geq 0, \forall y \in C$.
The set of solution of (1) is denoted by $G M E P(f, \varphi)$,i.e.

$$
\begin{array}{r}
G M E P(f, \varphi)=\{z \in C \mid f(z, y)+\langle A z, y-z\rangle+ \\
\varphi(y)-\varphi(z) \geq 0, \forall y \in C\} .
\end{array}
$$

Special cases:
(I) If $A=0$,then the problem (1) is equivalent to find $z \in C$ such that

$$
\begin{equation*}
f(z, y)+\varphi(y)-\varphi(z) \geq 0, \forall y \in C \tag{2}
\end{equation*}
$$

This is called the mixed equilibrium problem. The set of solution of (2) is denoted by $M E P(f, \varphi)$.
(II) If $f=0$,then the problem (1) is equivalent to find $z \in C$ such that

$$
\begin{equation*}
\langle A z, y-z\rangle+\varphi(y)-\varphi(z) \geq 0, \forall y \in C . \tag{3}
\end{equation*}
$$

This is called the mixed variational inequality of Browder type. The set of solution of (3) is denoted
by $V I(C, A, \varphi)$. In particular, $V I(C, A, 0)$ is denoted by $V I(C, A)$.
(III) If $\varphi=0$, then the problem (1) is equivalent to find $z \in C$ such that

$$
\begin{equation*}
f(z, y)+\langle A z, y-z\rangle \geq 0, \forall y \in C \tag{4}
\end{equation*}
$$

It is called the generalized equilibrium problem. The set of solution of (4) is denoted by $G E P(f)$.
(IV) If $A=0, \varphi=0$,then the problem (1) is equivalent to find $z \in C$ such that

$$
\begin{equation*}
f(z, y) \geq 0, \forall y \in C \tag{5}
\end{equation*}
$$

It is called the equilibrium problem. The set of solution of (5) is denoted by $E P(f)$.

An operator $B: C \rightarrow E^{*}$ is called α-inversestrongly monotone, if there exists a positive real number α such that
$\langle x-y, B x-B y\rangle \geq \alpha\|B x-B y\|^{2}, \forall x, y \in C$.
Obviously, if B is α-inverse-strongly monotone, then B is $\frac{1}{\alpha}$-continuous. In this paper, we shall assume that
(B1) B is α-inverse-strongly monotone;
(B2) $V I(C, B) \neq \emptyset$;
(B3) $\|B y\| \leq\|B y-B u\|$ for all $y \in C$ and $u \in$ $V I(C, B)$.

The generalized mixed equilibrium problems include fixed point problems, optimization problems,
variational inequality problems, Nash equilibrium problems and equilibrium problems as special cases (see, for example,[1]). Some methods have been proposed to solve the generalized mixed equilibrium problem(see, for example,[1-5]).Numerous problems in Physics, optimization and economics help to find a solution of problem (5).

Recently, Petrot et al.[6] introduced the following hybrid iterative scheme for approximation of a common fixed point of two relatively quasi-nonexpansive mappings, which is also a solution to generalized mixed equilibrium problem in a uniformly smooth and uniformly convex real Banach space:

$$
\left\{\begin{array}{l}
x_{0} \in C \quad \text { chosen arbitrariy, } \\
y_{n}=J^{-1}\left(\delta_{n} J x_{n}+\left(1-\delta_{n}\right) J z_{n}\right), \\
z_{n}=J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J T x_{n}+\gamma_{n} J S x_{n}\right), \\
f\left(u_{n}, y\right)+\left\langle A u_{n}, y-u_{n}\right\rangle+\varphi(y)-\varphi\left(u_{n}\right)+ \\
\quad \frac{1}{r_{n}}\left(y-u_{n}, J u_{n}-J x\right\rangle \geq 0, \forall y \in C, \\
C_{n}=\left\{z \in C: \phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0} .
\end{array}\right.
$$

They proved strong convergence theorem to a common element of set of common fixed points of S and T and set of solutions to the generalized mixed equilibrium problem.

Furthermore, Cholamjiak [7]introduced a hybrid iterative scheme for approximation of a fixed point of relatively quasi-nonexpansive mapping which is also a solution to equilibrium problem and variational inequality problems in a 2 -uniformly convex real Ba nach space, which is also uniformly smooth:

$$
\left\{\begin{array}{l}
x_{0} \in C \quad \text { chosen arbitrariy, } \\
C_{1}=C, x_{1}=\Pi_{C_{1}} x_{0}, \\
\nu_{n}=\Pi_{C} J^{-1}\left(J x_{n}-\delta_{n} B x_{n}\right), \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J T x_{n}+\gamma_{n} J S \nu_{n}\right), \\
f\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0, \forall y \in C, \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0} .
\end{array}\right.
$$

Then, he proved that $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$, where $F:=F(T) \cap F(S) \cap V I(C, B) \cap$ $E P(F) \neq \emptyset$.

In [8], Martinez-Yanes and Xu introduced the following iterative scheme for a single non-expansive mapping T in a Hilbert space H :

$$
\left\{\begin{aligned}
& x_{0} \in C \\
& y_{n}= \alpha_{n} x_{0}+\left(1-\alpha_{n}\right) T x_{n} \\
& C_{n}=\left\{z \in C:\left\|z-y_{n}\right\|^{2} \leq \alpha_{n}\left(\left\|x_{0}\right\|^{2}\right.\right. \\
&\left.\left.+2\left\langle x_{n}-x_{0}, z\right\rangle\right)+\left\|z-x_{n}\right\|^{2}\right\} \\
& Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
& x_{n+1}= P_{C_{n} \cap Q_{n}} x_{0}
\end{aligned}\right.
$$

where P_{C} denotes the metric projection of H onto a closed and convex subset C of H. They proved that if $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\lim _{n \rightarrow \infty} \alpha_{n}=0$, then the sequence $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x_{0}$.

In [9], Qin and Su extended the results of Martinez-Yanes and Xu [8] from Hilbert spaces to Banach spaces and proved the following result: Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex Banach space E and let $T: C \rightarrow C$ be a relatively non-expansive mapping. Assume that $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Define a sequence $\left\{x_{n}\right\}$ in C by the following algorithm:

$$
\left\{\begin{array}{l}
x_{0} \in C \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{0}+\left(1-\alpha_{n}\right) J T x_{n}\right) \\
C_{n}=\left\{z \in C: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}, n \geq 0
\end{array}\right.
$$

If $F(T)$ is nonempty, then $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F(T)} x_{0}$.

In [10], Plubtieng and Ungchittrakool introduced the following hybrid projection algorithm for a pair of relatively nonexpansive mappings:

$$
\left\{\begin{array}{l}
x_{0} \in C \quad \text { chosen arbitrariy } \\
z_{n}=J^{-1}\left(\beta_{n}^{(1)} J x_{n}+\beta_{n}^{(2)} J T x_{n}\right. \\
\left.\quad \quad+\beta_{n}^{(3)} J S x_{n}\right) \tag{6}\\
y_{n}=J^{-1}\left(\alpha_{n} J x_{0}+\left(1-\alpha_{n}\right) J z_{n}\right), \\
C_{n}=\left\{z \in C: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)+\right. \\
\left.\quad \alpha_{n}\left(\left\|x_{0}\right\|^{2}+2\left\langle J x_{n}-J x_{0}, z\right\rangle\right)\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}^{(i)}\right\}, \mathrm{i}=1,2,3$, are sequences in $(0,1)$ satisfying $\beta_{n}^{(1)}+\beta_{n}^{(2)}+\beta_{n}^{(3)}=1$ and S and T are relatively nonexpansive mappings. They proved under the appropriate conditions on the parameters that the sequence $\left\{x_{n}\right\}$ generated by (6) converges strongly to a common fixed point of S and T.

2009, Qin et al. [11] introduced the following hybrid projection algorithm for two families of relatively quasi-nonexpansive mappings, which are more general than relatively nonexpansive mappings in a Ba nach space:

$$
\left\{\begin{align*}
& x_{0} \in C \quad \text { chosen arbitrariy } \\
& z_{n, j}= J^{-1}\left(\beta_{n, j}^{(1)} J x_{n}+\beta_{n, j}^{(2)} J T_{i} x_{n}\right. \\
&\left.\quad+\beta_{n, j}^{(3)} J S_{i} x_{n}\right) \\
& y_{n, i}= J^{-1}\left(\alpha_{n, i} J x_{0}+\left(1-\alpha_{n, i}\right) J z_{n, i}\right) \\
& C_{n, i}=\left\{z \in C: \phi\left(z, y_{n, i}\right) \leq \phi\left(z, x_{n}\right)\right. \tag{7}\\
&\left.+\alpha_{n, i}\left(\left\|x_{0}\right\|^{2}+2\left\langle J x_{n}-J x_{0}, z\right\rangle\right)\right\} \\
& C_{n}= \bigcap_{i=1}^{\infty} C_{n, i}, Q_{0}=C, \\
& Q_{n}=\left\{z \in Q_{n-1}:\left\langle x_{n}-z, J x_{0}\right.\right. \\
&\left.\left.\quad-J x_{n}\right\rangle \geq 0\right\} \\
& x_{n+1}= \Pi_{C_{n} \cap Q_{n}} x_{0}
\end{align*}\right.
$$

They proved under appropriate conditions on the parameters that the sequence $\left\{x_{n}\right\}$ generated by (7) converges strongly to a common fixed point of the two families $\left\{S_{i}\right\}$ and $\left\{T_{i}\right\}$.

Recently, Wangkeeree and Wangkeeree[12] introduced the following hybrid projection algorithm for approximation of common fixed point of two families of relatively quasi-non- expansive mappings, which is also a solution to variational inequality problem in a Banach space:

$$
\left\{\begin{array}{l}
x_{0} \in C \quad \text { chosen arbitrariy }, \\
C_{1, i}=C, C_{1}=\bigcap_{i=1}^{\infty} C_{1, i}, \\
x_{i}=\Pi_{C_{1}} x_{0}, \\
w_{n, i}=\Pi_{C_{1}} J^{-1}\left(J x_{n}-\lambda_{n, i} B x_{n}\right), \\
z_{n, i}=J^{-1}\left(\beta_{n, i}^{(1)} J x_{n}+\beta_{n, i}^{(2)} J T_{i} x_{n}\right. \tag{8}\\
\left.\quad+\beta_{n, i}^{(3)} J S_{i} w_{n, i}\right), \\
y_{n, i}=J^{-1}\left(\alpha_{n, i} J x_{0}+\left(1-\alpha_{n, i}\right) J z_{n, i}\right), \\
C_{n, i}=\left\{z \in C: \phi\left(z, y_{n, i}\right) \leq \phi\left(z, x_{n}\right)+\right. \\
\left.\quad \alpha_{n, i}\left(\left\|x_{0}\right\|^{2}+2\left\langle J x_{n}-J x_{0}, z\right\rangle\right)\right\}, \\
C_{n+1}=\bigcap_{i=1}^{\infty} C_{n+1, i}, \\
x_{n+1}=\prod_{C_{n}+1} x_{0} .
\end{array}\right.
$$

They proved under appropriate conditions on the parameters that the sequence $\left\{x_{n}\right\}$ generated by (8) converges strongly to a common element of the set of common fixed points of the two families $\left\{S_{i}\right\}$ and $\left\{T_{i}\right\}$ and set of solutions to a variational inequality problem.

In 2009, Takahashi and Zembayashi [13] proved strong and weak convergence theorems for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a relatively nonexpansive mapping in a Banach space by using the shrinking projection method.

Motivated by the above mentioned results and the on-going research, we introduce a new hybrid projection algorithm based on the shrinking projection
method and prove strong convergence theorem for approximation of a common element of the set of common fixed point of an infinite family of asymptotically quasi- ϕ-nonexpansive mappings, set of solutions to a variational inequality problem and the set of solutions to system of generalized mixed equilibrium problems in a 2 -uniformly convex real Banach space which is also uniformly smooth. Our results extend the results of Martinez-Yanes and $\mathrm{Xu}[8]$, Plubtieng and Ungchittrakool [10], Takahashi and Zembayashi [13] and many other recent and important results in the literature.

2 Preliminaries

Throughout this paper, we denote by N and R the sets of nonnegative integers and real numbers, respectively. Let E be a Banach space and let E^{*} be the topological dual of .For all $x \in E$ and $x^{*} \in E^{*}$, we denote the value of x^{*} at x by $\left\langle x, x^{*}\right\rangle$.The duality mapping $J: E \rightarrow 2^{E^{*}}$ is defined by

$$
J(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}
$$

It is well known that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.Now, let E be a smooth Banach space, we use $\phi: E \times E \rightarrow R$ to denote the Lyapunov functional defined by

$$
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}, \forall x, y \in E .
$$

It is obvious from the definition of ϕ that

$$
\left(A_{1}\right)(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2}
$$

Following Alber [14], the generalized projection Π_{C} : $E \rightarrow C$ is defined by

$$
\Pi_{C} x=\arg \min _{y \in C} \phi(y, x), \forall x \in C .
$$

If E is a Hilbert space H, then $\phi(y, x)=$ $\|y-x\|^{2}, x, y \in H$ and Π_{C} is the metric projection P_{C} of E onto C.

Let C be a nonempty closed convex subset of E and T be a mapping from C into itself. We denoted $F(T)$ by the set of fixed points of T. A point $p \in C$ is said to be an asymptotic fixed point of $T[15]$ if C contains a sequence $\left\{x_{n}\right\}$ which converges weakly to p such that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. The set of asymptotic fixed points of T is denoted by $\overrightarrow{F(T)}$. A mapping T from C into itself is said to be relatively nonexpansive $[15,16]$ if $\overrightarrow{F(T)}=F(T) \neq$ \emptyset, and $\phi(p, T x) \leq \phi(p, x)$ for all $x \in C$ and $p \in$
$F(T) . T$ is said to be quasi- ϕ-nonexpansive [1618]if $F(T) \neq \emptyset$ and $\phi(p, T x) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$. The mapping T is said to be asymptotically- ϕ-nonexpansive if there exists a sequence $\left\{k_{n}\right\} \subset[1,+\infty]$ with $\lim _{n \rightarrow+\infty} k_{n}=$ 1 such that $\phi\left(T^{n} x, T^{n} y\right) \leq k_{n} \phi(x, y)$ for all $x, y \in$ $C . T$ is said to be asymptotically quasi- ϕ nonexpansive $[17,18]$ if $F(T) \neq \emptyset$ and there exists a sequence $\left\{k_{n}\right\} \subset[1,+\infty]$ with $\lim _{n \rightarrow+\infty} k_{n}=1$ such that $\phi\left(p, T^{n} x\right) \leq k_{n} \phi(p, x)$ for all $x \in C, p \in$ $F(T)$ and $n \geq 1$.

The class of (asymptotically) quasi- ϕ nonexpansive mappings is more general than that of relatively nonexpansive mappings which requires the restriction: $\overrightarrow{F(T)}=F(T)$. A quasi- ϕ nonexpansive mapping with a nonempty fixed point set $F(T)$ is an asymptotically quasi- ϕ-nonexpansive mapping, but the converse may not be true.In the framework of Hilbert spaces,(asymptotically) quasi- ϕ-nonexpansive mappings is reduced to (asymptotically) quasi-nonexpansive mappings.

It is well-known that the following conclusions hold:

Lemma 1 [16] Let E be uniformly convex and smooth Banach space. Let $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences in E such that either $\left\{y_{n}\right\}$ or $\left\{z_{n}\right\}$ is bounded. If $\lim _{n \rightarrow+\infty} \phi\left(y_{n}, z_{n}\right)=0$, then $\lim _{n \rightarrow+\infty} \| y_{n}-$ $z_{n} \|=0$.

Lemma 2 [14] Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive $B a$ nach space $E, x \in E$ and $x_{0} \in C$.Then, $x_{0}=\Pi_{C} x$ if and only if $\left\langle x_{0}-y, J x-J x_{0}\right\rangle \geq 0, \forall y \in C$.

Lemma 3 [14] Let C be a nonempty closed convex subset of reflexive, strictly convex and smooth Banach space E and $x \in E$, Then

$$
\phi\left(y, \Pi_{C} x\right)+\phi\left(\Pi_{C} x, x\right) \leq \phi(y, x), \forall y \in C .
$$

Lemma 4 [18] Let E be a nonempty closed convex subset of uniformly convex and smooth Banach space E. Let $T: C \rightarrow C$ be a closed and asymptotically quasi- ϕ-non-expansive mapping. Then $F(T)$ is a closed convex subset of C.

Lemma 5 [18] Let E be a uniformly convex Banach space, $r>0$ be a positive number and $B_{r}(0)=\{x \in$ $E:\|x\| \leq r\}$. Then for any given infinite subset $\left\{x_{n}\right\} \subset B_{r}(0)$ and for any given sequence $\left\{\lambda_{n}\right\}$ of positive numbers with $\sum_{n=1}^{+\infty} \lambda_{n}=1$, there exists a continuous, strictly increasing and convex function g :
$[0,2 r) \rightarrow[0, \infty)$ with $g(0)=0$ such that for any $i, j \in N$ with $i<j$.

$$
\left\|\sum_{n=1}^{+\infty} \lambda_{n} x_{n}\right\|^{2} \leq \sum_{n=1}^{+\infty} \lambda_{n}\left\|x_{n}\right\|^{2}-\lambda_{i} \lambda_{j} g\left(\left\|x_{i}-x_{j}\right\|\right)
$$

For solving the equilibrium problem for bifunction $f: C \times C \rightarrow R$, let us assume that f satisfies the following conditions:
(C1) $f(x, x)=0, \forall x \in C$
(C2) f is monotone,i.e. $f(x, y)+f(y, x) \leq$ $0, \forall x, y \in C$
(C3) $\forall x, y, z \in C, \limsup f(t z+(1-t) x, y) \leq$ $f(x, y)$
(C4) $\forall x \in C, y \mapsto f(x, y)$ is a convex and lower semicontinuous.

If a bifunction $f: C \times C \rightarrow R$ satisfies conditions(C1)-(C4), then we have the following two important results.
Lemma 6 [18] Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive $B a$ nach spaces E, let $f: C \times C \rightarrow R$ be a bifunction satisfying conditions (C1)-(C4), $\varphi: C \rightarrow R$ be a lower semicontinuous and convex functional, A : $C \rightarrow E^{*}$ be a continuous and monotone mapping. For $r>0$ and $x \in E$,define a mapping $T_{r}^{G}: E \rightarrow$ C as follows:

$$
\begin{aligned}
& T_{r}^{G} x=\{z \in E: f(x, y)+\varphi(y)-\varphi(x) \\
& \left.+\langle A z, y-z\rangle+\frac{1}{r}\langle y-z, J z-J x\rangle, \forall y \in C\right\}
\end{aligned}
$$

Where $G(x, y)=f(x, y)+\varphi(y)-\varphi(x)+\langle A x, y-$ $x\rangle, \forall x, y \in C$. Then, the following holds:
(1) T_{r}^{G} is single-valued;
(2) $F\left(T_{r}^{G}\right)=G M E P(f, \varphi)$;
(3) T_{r}^{G} is quasi- ϕ-nonexpansive;
(4) $G M E P(f, \varphi)$ is closed and convex.

Lemma 7 [14] Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach spaces E, let $f: C \times C \rightarrow R$ be a bifunction satisfying conditions(C1)-(C4), and let $r>0$. Then, for $x \in E$ and $q \in F\left(T_{r}^{f}\right)$,

$$
\phi\left(q, T_{r}^{f} x\right)+\phi\left(T_{r}^{f} x, x\right) \leq \phi(q, x)
$$

The function V as studied by Alber [14]: $V\left(x, x^{*}\right)=\left\|x^{2}\right\|-2\left\langle x, x^{*}\right\rangle+\left\|x^{*}\right\|^{2}$ for all $x \in E$ and $x^{*} \in E^{*}$.Thus, $V\left(x, x^{*}\right)=$ $\phi\left(x, J^{-1}\left(x^{*}\right)\right)$.

Lemma 8 [14] Let E be a reflexive strictly convex Banach space. Then

$$
V\left(x, x^{*}\right)+2\left\langle J^{-1}\left(x^{*}\right)-x, y^{*}\right\rangle \leq V\left(x, x^{*}+y^{*}\right)
$$

for all $x \in E$ and $x^{*}, y^{*} \in E^{*}$.

Lemma 9 [19] Let E be a 2-uniformly convex Banach space, then there exists a constant $c>0$ such that for all $x, y \in E$ and $j x \in J x, j y \in J y$, we have

$$
\langle x-y, j x-j y\rangle \geq c\|x-y\|^{2} .
$$

where $\frac{1}{c}$ is the 2 -uniformly convexity constant.

3 Main results

Theorem 10 Let C be a nonempty closed convex subset of 2-uniformly convex and uniformly smooth Banach space E.Suppose $B: C \rightarrow$ E^{*} is an operator satisfying(B1)-(B3).For each $k=$ $1,2, \cdots, m$, let $A_{k}: C \rightarrow E^{*}$ be a continuous and monotone mapping, $\varphi_{k}: C \rightarrow R$ be a lower semi-continuous and convex functional, let f_{k} : $C \times C \rightarrow R$ be a bifunction satisfying(C1)(C4)and $T_{i}: C \rightarrow C, \forall i \in N$ be an infinite family of closed and asymptotically quasi- ϕ nonexpansive mapping with sequence $\left\{k_{n}^{(i)}\right\} \subseteq$ $[1,+\infty), \lim _{n \rightarrow+\infty} k_{n}^{(i)}=1$, where $T_{0}=I . A s-$ sume that $T_{i}, \forall i \in N$ is asymptotically regular on C, i.e., $\lim _{n \rightarrow+\infty}\left\|T_{i}^{n+1} x_{n}-T_{i}^{n} x_{n}\right\|=0$ and $F=$ $\left[\bigcap_{i=0}^{+\infty} F\left(T_{i}\right)\right] \cap\left[\bigcap_{k=1}^{m} \operatorname{GMEP}\left(f_{k}, \varphi_{k}\right)\right] \cap V I(C, B) \quad \neq$ \emptyset. Let x_{n} be a sequence generated by

$$
\begin{align*}
& \left\{\begin{array}{l}
x_{0} \in C \quad \text { chosen arbitrariy, } \\
y_{n}=J^{-1}\left(\alpha_{n} J \Pi_{C} J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}\right)+\right.
\end{array}\right. \\
& \left.\left(1-\alpha_{n}\right) J z_{n}\right), \\
& z_{n}=J^{-1}\left(\sum_{i=0}^{+\infty} \beta_{n}^{(i)} J T_{i}^{n} x_{n}\right), \\
& u_{n}=T_{r_{m, n}}^{G_{m}} T_{r_{m-1, n}}^{G_{m-1}} \cdots T_{r_{2, n}}^{G_{2}} T_{r_{1}, n}^{G_{1}} y_{n}, \tag{9}\\
& C_{n}=\left\{z \in C: \phi\left(z, u_{n}\right) \leq\left(1-\alpha_{n}\right) \phi\left(z, z_{n}\right)\right. \\
& +\alpha_{n} \phi\left(z, x_{n}\right) \leq \phi\left(z, x_{n}\right) \\
& \left.+\left(k_{n}-1\right) M_{n}\right\}, \\
& Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\}, \\
& x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}
\end{align*}
$$

where $M_{n}=\sup \left\{\phi\left(z, x_{n}\right) \mid z \in F\right\}<$ $+\infty$ for each $n \geq 0, k_{n}=\sup _{i \geq 0}\left\{k_{n}^{(i)}\right\},\left\{\lambda_{n}\right\} \subset$ $[a, b]$,for some a, b with $0<a<b<$ $c \alpha$, where $\frac{1}{c}$ is 2 -uniformly convexity constant of E, for each $k=1,2, \cdots, m,\left\{r_{k, n}\right\}_{n=1}^{+\infty} \subset(0,+\infty)$ satisfying $\liminf _{n \rightarrow+\infty} r_{k, n}>0$, for all $z, y \in C, G_{k}(z, y)=$ $f_{k}(z, y)+\varphi_{k}(y)-\varphi_{k}(z)+\left\langle A_{k} z, y-z\right\rangle, T_{r_{k, n}}^{G_{k}}(x)=$ $\left\{z \in C: G_{k}(z, y)+\frac{1}{r_{k, n}}\langle y-z, J z-J x\rangle \geq\right.$ $0, \forall y \in C\},\left\{\alpha_{n}\right\},\left\{\beta_{n}^{(i)}\right\}, i \in N$ are real sequences in $[0,1]$ satisfies the conditions: $\forall n \geq 1,0 \leq$
$\beta_{n}^{(i)} \leq 1, \sum_{i=0}^{\infty} \beta_{n}^{(i)}=1, \liminf _{n \rightarrow \infty}\left(1-\alpha_{n}\right) \beta_{n}^{(0)} \beta_{n}^{(i)}>$ $0, \forall i \in N$.Then the sequence $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$.

Proof: We define a bifunction $G_{k}: C \times C \rightarrow R$ by
$G_{k}(x, y)=f_{k}(x, y)+\varphi_{k}(y)-\varphi_{k}(x)+\left\langle A_{k} x, y-x\right\rangle$,
$\forall x, y \in C$.Then, we prove from Lemma 6 that the bifunction G_{k} satisfies conditions(C1)-(C4)for each $k=1,2, \cdots, m$. Therefore, the generalized mixed equilibrium problem (1) is equivalent to the following equilibrium problem: find $x \in C$ such that

$$
G_{k}(x, y) \geq 0, \forall y \in C
$$

Hence $\operatorname{GMEP}\left(f_{k}, \varphi_{k}\right)=E P\left(G_{k}\right)$, By taking $\theta_{n}^{k}=$ $T_{r_{k, n}}^{G_{k}} T_{r_{k-1, n}}^{G_{k-1}} \cdots T_{r_{2, n}}^{G_{2}} T_{r_{1}, n}^{G_{1}}, k=1,2, \cdots, m$ and $\theta_{n}^{0}=$ I for all $n \geq 1$, we obtain $u_{n}=\theta_{n}^{m} y_{n}$. Let $t_{n}=$ $J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}\right)$.We divide the proof of Theorem 1 into five steps:

Step 1 We first show that C_{n} and Q_{n} are closed and convex for each $n \geq 0$.

In fact,for $z \in C_{m}$, we see that

$$
\begin{aligned}
& \phi\left(z, u_{m}\right) \leq \alpha_{n} \phi\left(z, x_{m}\right)+\left(1-\alpha_{m}\right) \phi\left(z, z_{m}\right) \\
\leq \quad & \phi\left(z, x_{m}\right)+\left(k_{m}-1\right) M_{m}
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
& 2\left\langle z, \alpha_{m} J x_{m}+\left(1-\alpha_{m}\right) J z_{m}-J u_{m}\right\rangle \\
\leq & \alpha_{m}\left\|x_{m}\right\|^{2}+\left(1-\alpha_{m}\right)\left\|z_{m}\right\|^{2}-\left\|u_{m}\right\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& 2\left(1-\alpha_{m}\right)\left\langle z, J x_{m}-J z_{m}\right\rangle \\
\leq & \left(1-\alpha_{m}\right)\left(\left\|x_{m}\right\|^{2}-\left\|z_{m}\right\|^{2}\right)+\left(k_{n}-1\right) M_{n} .
\end{aligned}
$$

The last two inequalities are the affine with respect to z,so C_{n} is closed and convex. From the definition of Q_{n}, we may obtain that Q_{n} is closed and convex for each $n \geq 0$.

Step 2 Next, we show that $F \subset C_{n} \cap Q_{n}$ for each $n \geq 0$.

First we show that $F \subset C_{n}$ for each $n \geq 0$.
In fact, by the definition of $\phi(\cdot, \cdot)$ and (9), for each $p \subset F$, we obtain

$$
\begin{aligned}
& \phi\left(p, z_{n}\right)=\phi\left(p, J^{-1}\left(\sum_{i=0}^{+\infty} \beta_{n}^{(i)} J T_{i}^{n} x_{n}\right)\right) \\
= & \|p\|^{2}-2\left\langle p, \sum_{i=0}^{+\infty} \beta_{n}^{(i)} J T_{i}^{n} x_{n}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& +\left\|J^{-1}\left(\sum_{i=0}^{+\infty} \beta_{n}^{(i)} J T_{i}^{n} x_{n}\right)\right\|^{2} \\
& \leq\|p\|^{2}-2 \sum_{i=0}^{+\infty} \beta_{n}^{(i)}\left\langle p, J T_{i}^{n} x_{n}\right\rangle+\sum_{i=0}^{+\infty} \beta_{n}^{(i)}\left\|T_{i}^{n} x_{n}\right\|^{2} \\
& =\sum_{i=0}^{+\infty} \beta_{n}^{(i)} \phi\left(p, T_{i}^{n} x_{n}\right) \\
& \leq \sum_{i=0}^{+\infty} \beta_{n}^{(i)} k_{n}^{(i)} \phi\left(p, x_{n}\right) \\
& =\sum_{i=0}^{+\infty} \beta_{n}^{(i)}\left[1+\left(k_{n}^{(i)}-1\right)\right] \phi\left(p, x_{n}\right) \\
& =\phi\left(p, x_{n}\right)+\sum_{i=0}^{+\infty} \beta_{n}^{(i)}\left(k_{n}^{(i)}-1\right) \phi\left(p, x_{n}\right) \\
& \leq \phi\left(p, x_{n}\right)+\left(k_{n}-1\right) M_{n} \tag{10}
\end{align*}
$$

Observe that $p \subset F$ implies $p \subset C$, by Lemma 3, Lemma 8 and (9), for all $p \subset C$, we have

$$
\begin{align*}
& \phi\left(x_{n}, \Pi_{C} t_{n}\right) \leq \phi\left(x_{n}, t_{n}\right)-\phi\left(\Pi_{C} t_{n}, t_{n}\right) \\
\leq & \phi\left(p, t_{n}\right)=V\left(p, J x_{n}-\lambda_{n} B x_{n}\right) \\
\leq & V\left(p,\left(J x_{n}-\lambda_{n} B x_{n}\right)+\lambda_{n} B x_{n}\right) \\
& -2\left\langle J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}\right)-p, \lambda_{n} B x_{n}\right\rangle \\
= & V\left(p, J x_{n}\right)-2 \lambda_{n}\left\langle t_{n}-p, B x_{n}\right\rangle \\
= & \phi\left(p, x_{n}\right)-2 \lambda_{n}\left\langle x_{n}-p, B x_{n}\right\rangle \\
+ & 2\left\langle t_{n}-x_{n},-\lambda_{n} B x_{n}\right\rangle \tag{11}
\end{align*}
$$

From condition (B1) and $p \in V I(C, B)$, we obtain

$$
\begin{align*}
& -2 \lambda_{n}\left\langle x_{n}-p, B x_{n}\right\rangle \\
= & -2 \lambda_{n}\left\langle x_{n}-p, B x_{n}-B p\right\rangle-2 \lambda_{n}\left\langle x_{n}-p, B p\right\rangle \\
\leq & -2 \lambda_{n} \alpha\left\|B x_{n}-B p\right\|^{2} . \tag{12}
\end{align*}
$$

By Lemma 9 and condition (B1), we also obtain

$$
\begin{align*}
& 2\left\langle t_{n}-x_{n},-\lambda_{n} B x_{n}\right\rangle \leq 2\left\|t_{n}-x_{n}\right\| \cdot \lambda_{n}\left\|B x_{n}\right\| \\
\leq & \frac{2}{c}\left\|J t_{n}-J x_{n}\right\| \cdot \lambda_{n}\left\|B x_{n}\right\| \\
= & \frac{2}{c} \lambda_{n}^{2} \cdot\left\|B x_{n}\right\|^{2} \leq \frac{2}{c} \lambda_{n}^{2} \cdot\left\|B x_{n}-B p\right\|^{2} \tag{13}
\end{align*}
$$

Combining (11)-(13) and $0<b<c \alpha$, we obtain

$$
\begin{align*}
& \phi\left(p, \Pi_{C} t_{n}\right) \leq \phi\left(p, t_{n}\right) \\
\leq & \phi\left(p, x_{n}\right)+2 \lambda_{n}\left(\frac{b}{c}-\alpha\right) \cdot\left\|B x_{n}-B p\right\|^{2} \\
\leq & \phi\left(p, x_{n}\right) \tag{14}
\end{align*}
$$

Thus, by (9), (10), (14), Lemma7, Lemma6 and the fact that $T_{r_{k, n}}^{G_{k}}(k=1,2, \cdots, m)$ is quasi- ϕ nonexpansive mapping, for each $p \subset F$, we obtain

$$
\phi\left(p, u_{n}\right)=\phi\left(p, \theta_{n}^{m} y_{n}\right)
$$

$$
\begin{align*}
& \leq \phi\left(p, y_{n}\right) \\
& =\phi\left(p, J^{-1}\left(\alpha_{n} J \Pi_{C} t_{n}+\left(1-\alpha_{n}\right) J z_{n}\right)\right) \\
& =\|p\|^{2}-2\left\langle p, \alpha_{n} J \Pi_{C} t_{n}+\left(1-\alpha_{n}\right) J z_{n}\right\rangle \\
& +\left\|J^{-1}\left(\alpha_{n} J \Pi_{C} t_{n}+\left(1-\alpha_{n}\right) J z_{n}\right)\right\|^{2} \\
& =\|p\|^{2}-2 \alpha_{n}\left\langle p, J \Pi_{C} t_{n}\right\rangle-2\left(1-\alpha_{n}\right)\left\langle p, J z_{n}\right\rangle \\
& +\left\|\alpha_{n} J \Pi_{C} t_{n}+\left(1-\alpha_{n}\right) J z_{n}\right\|^{2} \\
& \leq\|p\|^{2}-2 \alpha_{n}\left\langle p, J \Pi_{C} t_{n}\right\rangle-2\left(1-\alpha_{n}\right)\left\langle p, J z_{n}\right\rangle \\
& +\alpha_{n}\left\|\Pi_{C} t_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}\right\|^{2} \\
& =\alpha_{n}\left(\|p\|^{2}-2\left\langle p, J \Pi_{C} t_{n}\right\rangle+\left\|\Pi_{C} t_{n}\right\|^{2}\right) \\
& +\left(1-\alpha_{n}\right)\left(\|p\|^{2}-2\left\langle p, J z_{n}\right\rangle+\left\|z_{n}\right\|^{2}\right) \\
& =\alpha_{n} \phi\left(p, \Pi_{C} t_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, z_{n}\right) \\
& \leq \alpha_{n} \phi\left(p, x_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, z_{n}\right) \\
& \leq \alpha_{n} \phi\left(p, x_{n}\right)+\left(1-\alpha_{n}\right)\left[\phi\left(p, x_{n}\right)\right. \\
& \left.+\quad\left(k_{n}-1\right) M_{n}\right] \\
& \leq \phi\left(p, x_{n}\right)+\left(k_{n}-1\right) M_{n} . \tag{15}
\end{align*}
$$

So, $p \subset C_{n}$.This implies that $F \subset C_{n}, \forall n \geq 0$.
Second we show that $F \subset Q_{n}$ for each $n \geq 0$. In fact, for $n=0, F \subset C=Q_{0}$ is obvious. Suppose that $F \subset Q_{n}$ for some positive integer n, it follows from $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}$ and Lemma2 that

$$
\left\langle x_{n+1}-z, J x_{0}-J x_{n+1}\right\rangle \geq 0, \forall z \in C_{n} \cap Q_{n}
$$

From $F \subset Q_{n}$, we obtain $F \subset C_{n} \cap Q_{n}$.In particular, for all $z \subset F$, the last inequality should be held. Combining the definition of Q_{n+1}, we obtain that $F \subset Q_{n+1}$. So we have that $F \subset C_{n} \cap Q_{n}, \forall n \geq$ 0 .

Step 3 Now, we show that $\left\{x_{n}\right\}$ is Cauchy sequence.
In fact, by the construction of Q_{n} and Lemma 2, we have that $x_{n}=\Pi_{Q_{n}} x_{0}$, it then follows from Lemma 3 that

$$
\begin{aligned}
& \phi\left(x_{n}, x_{0}\right)=\phi\left(\Pi_{Q_{n}} x_{0}, x_{0}\right) \\
\leq & \phi\left(p, x_{0}\right)-\phi\left(p, x_{n}\right) \\
\leq & \phi\left(p, x_{0}\right)
\end{aligned}
$$

for each $p \in F \subset Q_{n}, \forall n \geq 0$.Hence, the sequence $\phi\left(x_{n}, x_{0}\right)$ is bounded.

Combining $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0} \in Q_{n}$ and Lemma 3, we obtain

$$
0 \leq \phi\left(x_{n}, x_{n+1}\right) \leq \phi\left(x_{n}, x_{0}\right)-\phi\left(x_{n-1}, x_{0}\right)
$$

for all $n \geq 0$.Thus, the sequence $\phi\left(x_{n}, x_{0}\right)$ is nondecreasing. It follows from the boundedness of $\phi\left(x_{n}, x_{0}\right)$ that the limit of $\phi\left(x_{n}, x_{0}\right)$ exists.

For any positive integer m, it then follows from Lemma 3 that

$$
\begin{align*}
& \phi\left(x_{n+m}, x_{n}\right)=\phi\left(x_{n+m}, \Pi_{Q_{n}} x_{0}\right) \\
\leq & \phi\left(x_{n+m}, x_{0}\right)-\phi\left(\Pi_{Q_{n}} x_{0}, x_{0}\right) \\
= & \phi\left(x_{n+m}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right) \tag{16}
\end{align*}
$$

it follows from (16) that $\phi\left(x_{n+m}, x_{0}\right) \rightarrow 0$ as $m, n \rightarrow$ ∞. we have from (A1) and the boundedness of $\phi\left(x_{n}, x_{0}\right)$ that $\left\{x_{n}\right\}$ is bounded, combining Lemma 1, we obtain

$$
x_{n+m}-x_{n} \rightarrow 0, m, n \rightarrow \infty
$$

Hence, the sequence $\left\{x_{n}\right\}$ is Cauchy in C. Since E is a Banach space and C is closed convex, then there exists $p \in C$ such that $x_{n} \rightarrow p$ as $n \rightarrow \infty$. Now, since $\phi\left(x_{n+m}, x_{0}\right) \rightarrow 0$ as $m, n \rightarrow \infty$, we have in particular that $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0$ and this further implies that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.

Since $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0} \in C_{n}$, we have

$$
\begin{aligned}
& 0 \leq \phi\left(x_{n+1}, u_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right) \\
+\quad & \left(k_{n}-1\right) M_{n} \rightarrow 0, n \rightarrow \infty
\end{aligned}
$$

From Lemma 1, we obtain that

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-u_{n}\right\|=0
$$

Therefore

$$
\begin{align*}
& \left\|x_{n}-u_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\| \\
+\quad & \left\|x_{n+1}-u_{n}\right\| \rightarrow 0 \tag{17}
\end{align*}
$$

It follows from $\lim _{n \rightarrow+\infty}\left\|x_{n}-p\right\|=0$ and (17) that

$$
\begin{equation*}
u_{n} \rightarrow p, n \rightarrow \infty \tag{18}
\end{equation*}
$$

Step 4 Now we prove that
$p \in\left[\bigcap_{i=0}^{+\infty} F\left(T_{i}\right)\right] \bigcap\left[\bigcap_{k=1}^{m} G M E P\left(f_{k}, \varphi_{k}\right)\right] \bigcap V I(C, B)$.
(a) First we prove that $p \in \bigcap_{i=0}^{+\infty} F\left(T_{i}\right)$.

Since E is uniformly smooth space, we have that J is uniformly norm-norm continuous on any bounded sets and (17), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J u_{n}\right\|=0 \tag{19}
\end{equation*}
$$

It follows from the boundedness of the sequences $\left\{x_{n}\right\}$ and $\left\{k_{n}\right\}, \phi\left(p, T_{i}^{n} x_{n}\right) \leq k_{n} \phi\left(p, x_{n}\right)$ for each $p \in F$ and $i \in N$ that the sequences $\left\{J T_{i}^{n} x_{n}\right\}$ are bounded. Thus there exists $r>0$ such that $\left\{J T_{i}^{n} x_{n}\right\} \subset B_{r}(0)$. For each $p \in F$, we have from Lemma 5, Lemma 6, Lemma 7 and (14) that

$$
\begin{aligned}
& \phi\left(p, u_{n}\right)=\phi\left(p, \theta_{n}^{m} y_{n}\right) \\
\leq & \phi\left(p, y_{n}\right) \\
= & \phi\left(p, J^{-1}\left(\alpha_{n} J \Pi_{C} t_{n}+\left(1-\alpha_{n}\right) J z_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \alpha_{n} \phi\left(p, \Pi_{C} t_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, z_{n}\right) \\
= & \alpha_{n} \phi\left(p, \Pi_{C} t_{n}\right)+\left(1-\alpha_{n}\right) \cdot\left(\|p\|^{2}\right. \\
- & \left.2\left\langle p, \sum_{i=0}^{+\infty} \beta_{n}^{(i)} J T_{i}^{n} x_{n}\right\rangle+\left\|\sum_{i=0}^{+\infty} \beta_{n}^{(i)} J T_{i}^{n} x_{n}\right\|^{2}\right) \\
\leq & \alpha_{n} \phi\left(p, \Pi_{C} t_{n}\right)+\left(1-\alpha_{n}\right) \cdot \\
& \left(\|p\|^{2}-2 \sum_{i=0}^{+\infty} \beta_{n}^{(i)}\left\langle p, J T_{i}^{n} x_{n}\right\rangle\right. \\
& \left.+\sum_{i=0}^{+\infty} \beta_{n}^{(i)}\left\|J T_{i}^{n} x_{n}\right\|^{2}\right) \\
- & \left.\beta_{n}^{(0)} \beta_{n}^{(i)} g\left(\left\|J T_{0}^{n} x_{n}-J T_{i}^{n} x_{n}\right\|\right)\right) \\
= & \alpha_{n} \phi\left(p, \Pi_{C} t_{n}\right)+\left(1-\alpha_{n}\right) \cdot\left(\sum_{i=0}^{+\infty} \beta_{n}^{(i)} \phi\left(p, T_{i}^{n} x_{n}\right)\right. \\
- & \left.\beta_{n}^{(0)} \beta_{n}^{(i)} g\left(\left\|J T_{0}^{n} x_{n}-J T_{i}^{n} x_{n}\right\|\right)\right) \\
\leq & \alpha_{n} \phi\left(p, x_{n}\right)+\left(1-\alpha_{n}\right) \\
\cdot & \left(\sum_{i=0}^{+\infty} \beta_{n}^{(i)}\left[1+\left(k_{n}^{(i)}-1\right)\right] \phi\left(p, x_{n}\right)\right. \\
- & \left.\beta_{n}^{(0)} \beta_{n}^{(i)} g\left(\left\|J T_{0}^{n} x_{n}-J T_{i}^{n} x_{n}\right\|\right)\right) \\
\leq & \alpha_{n} \phi\left(p, x_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, x_{n}\right)+\left(k_{n}-1\right) M_{n} \\
- & \left(1-\alpha_{n}\right) \beta_{n}^{(0)} \beta_{n}^{(i)} g\left(\left\|J T_{0}^{n} x_{n}-J T_{i}^{n} x_{n}\right\|\right) \\
= & \phi\left(p, x_{n}\right)+\left(k_{n}-1\right) M_{n} \\
- & \left(1-\alpha_{n}\right) \beta_{n}^{(0)} \beta_{n}^{(i)} g\left(\left\|J T_{0}^{n} x_{n}-J T_{i}^{n} x_{n}\right\|\right) .
\end{aligned}
$$

This implies that

$$
\begin{align*}
& 0 \leq\left(1-\alpha_{n}\right) \beta_{n}^{(0)} \beta_{n}^{(i)} g\left(\left\|J T_{0}^{n} x_{n}-J T_{i}^{n} x_{n}\right\|\right) \\
\leq & \phi\left(p, x_{n}\right)-\phi\left(p, u_{n}\right)+\left(k_{n}-1\right) M_{n} \tag{20}
\end{align*}
$$

On the other hand, we have

$$
\begin{aligned}
& \phi\left(p, x_{n}\right)-\phi\left(p, u_{n}\right) \\
= & \left\|x_{n}\right\|^{2}-\left\|u_{n}\right\|^{2}-2\left\langle p, J x_{n}-J u_{n}\right\rangle \\
\leq & \left\|x_{n}-u_{n}\right\| \cdot\left(\left\|x_{n}\right\|+\left\|u_{n}\right\|\right) \\
+ & 2\|p\| \cdot\left\|J x_{n}-J u_{n}\right\| .
\end{aligned}
$$

In view of (17) and (19), we obtain

$$
\begin{equation*}
\phi\left(p, x_{n}\right)-\phi\left(p, u_{n}\right) \rightarrow 0, n \rightarrow \infty \tag{21}
\end{equation*}
$$

Combining(20)-(21), $\lim _{n \rightarrow+\infty}\left(k_{n}-1\right) M_{n}=0, T_{0}=$ I and the assumption $\lim _{n \rightarrow \infty}\left(1-\alpha_{n}\right) \beta_{n}^{(0)} \beta_{n}^{(i)}>0$,we have

$$
g\left(\left\|J x_{n}-J T_{i}^{n} x_{n}\right\|\right) \rightarrow 0, n \rightarrow \infty
$$

It follows from the property of g that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|J x_{n}-J T_{i}^{n} x_{n}\right\|=0 \tag{22}
\end{equation*}
$$

Since $x_{n} \rightarrow p$ as $n \rightarrow \infty$ and J is uniformly normnorm continuous on any bounded sets, we obtain that.

$$
\begin{equation*}
\left\|J x_{n}-J p\right\| \rightarrow 0, n \rightarrow \infty \tag{23}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \left\|J T_{i}^{n} x_{n}-J p\right\| \leq\left\|J x_{n}-J T_{i}^{n} x_{n}\right\| \\
+\quad & \left\|J x_{n}-J p\right\| .
\end{aligned}
$$

From (22) and (23), we see that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|J T_{i}^{n} x_{n}-J p\right\|=0 \tag{24}
\end{equation*}
$$

Note that J^{-1} is also uniformly norm-norm continuous on any bounded sets. It follows from (24) that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|T_{i}^{n} x_{n}-p\right\|=0 \tag{25}
\end{equation*}
$$

Note that $\left\|T_{i}^{n+1} x_{n}-p\right\| \leq\left\|T_{i}^{n+1} x_{n}-T_{i}^{n} x_{n}\right\|+$ $\left\|T_{i}^{n} x_{n}-p\right\|$, the asymptotic regularity of T and (25), we have $\lim _{n \rightarrow+\infty}\left\|T_{i}^{n+1} x_{n}-p\right\|=0$.That is, $T_{i}\left(T_{i}^{n} x_{n}\right) \rightarrow p$ as $n \rightarrow \infty$, it follows from the closeness of T_{i} that $T_{i} p=p, \forall i \in N$, i.e. $p \in$ $\bigcap_{i=0}^{+\infty} F\left(T_{i}\right)$.
(b) Now we prove that

$$
p \in \bigcap_{k=1}^{m} G M E P\left(f_{k}, \varphi_{k}\right)=\bigcap_{k=1}^{m} E P\left(G_{k}\right) .
$$

In fact, in view of $u_{n}=\theta_{n}^{m} y_{n}$,(15) and Lemma 7, for each $q \in F\left(\theta_{n}^{k}\right)$, we have

$$
\begin{aligned}
& 0 \leq \phi\left(u_{n}, y_{n}\right)=\phi\left(\theta_{n}^{m} y_{n}, y_{n}\right) \\
\leq & \phi\left(p, y_{n}\right)-\phi\left(p, \theta_{n}^{m} y_{n}\right) \\
\leq & \phi\left(p, x_{n}\right)-\phi\left(p, u_{n}\right)+\left(k_{n}-1\right) M_{n}
\end{aligned}
$$

It follows from (21) and $\lim _{n \rightarrow+\infty}\left(k_{n}-1\right) M_{n}=$ 0 that $\phi\left(u_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.Using Lemma 1 , we see that $\left\|u_{n}-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.Furthermore, $\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-y_{n}\right\| \rightarrow$ 0 as $n \rightarrow \infty$. Since $x_{n} \rightarrow p, n \rightarrow \infty$ and $\left\|x_{n}-y_{n}\right\| \rightarrow$ $0, n \rightarrow \infty$,then $y_{n} \rightarrow p, n \rightarrow \infty$. By the fact that $\theta_{n}^{k}, k=1,2, \cdots, m$ is relatively nonexpansive and using Lemma7 again, we have that

$$
\begin{align*}
& 0 \leq \phi\left(\theta_{n}^{k} y_{n}, y_{n}\right) \\
\leq & \phi\left(p, y_{n}\right)-\phi\left(p, \theta_{n}^{k} y_{n}\right) \\
\leq & \phi\left(p, x_{n}\right)-\phi\left(p, \theta_{n}^{k} y_{n}\right)+\left(k_{n}-1\right) M_{n} \tag{26}
\end{align*}
$$

Observe that

$$
\begin{align*}
& \phi\left(p, u_{n}\right)=\phi\left(p, \theta_{n}^{k} y_{n}\right) \\
= & \phi\left(p, T_{r_{m, n}}^{G_{m}} T_{r_{m-1, n}}^{G_{m-1}} \cdots T_{r_{2, n}}^{G_{2}} T_{r_{1, n}}^{G_{1}} y_{n}\right) \\
= & \phi\left(p, T_{r_{m, n}}^{G_{m}} T_{r_{m-1, n}}^{G_{m-1}} \cdots \theta_{n}^{k} y_{n}\right) \\
\leq & \phi\left(p, \theta_{n}^{k} y_{n}\right) . \tag{27}
\end{align*}
$$

Using (27) in (26), we obtain that

$$
\begin{aligned}
& 0 \leq \phi\left(\theta_{n}^{k} y_{n}, y_{n}\right) \leq \phi\left(p, x_{n}\right)-\phi\left(p, u_{n}\right) \\
& +\left(k_{n}-1\right) M_{n} \rightarrow 0, n \rightarrow \infty
\end{aligned}
$$

Then Lemma 1 implies that $\lim _{n \rightarrow \infty}\left\|\theta_{n}^{k} y_{n}-y_{n}\right\|=$ $0, k=1,2, \cdots, m$.Now

$$
\begin{aligned}
& \left\|\theta_{n}^{k} y_{n}-p\right\| \leq\left\|\theta_{n}^{k} y_{n}-y_{n}\right\|+\left\|y_{n}-p\right\| \\
& \rightarrow 0, n \rightarrow \infty, k=1,2, \cdots, m
\end{aligned}
$$

Similarly, $\lim _{n \rightarrow+\infty}\left\|\theta_{n}^{k-1} y_{n}-p\right\|=0, k=$ $1,2, \cdots, m$.This further implies that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|\theta_{n}^{k-1} y_{n}-\theta_{n}^{k} y_{n}\right\|=0 \tag{28}
\end{equation*}
$$

Also, since J is uniformly norm-norm continuous on any bounded sets and using (28), we obtain that $\lim _{n \rightarrow+\infty}\left\|J \theta_{n}^{k-1} y_{n}-J \theta_{n}^{k} y_{n}\right\|=0$. From the assumption $\left\{r_{k, n}\right\}_{n=1}^{+\infty} \subset(0,+\infty)$ satisfying $\liminf _{n \rightarrow+\infty} r_{k, n}>0$ for each $k=1,2, \cdots, m$, we see that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\left\|J \theta_{n}^{k-1} y_{n}-J \theta_{n}^{k} y_{n}\right\|}{r_{k, n}}=0 \tag{29}
\end{equation*}
$$

By Lemma 6, we have that for each $k=1,2, \cdots, m$,

$$
\begin{aligned}
& \frac{1}{r_{k, n}}\left\langle y-\theta_{n}^{k} y_{n}, J \theta_{n}^{k} y_{n}-J \theta_{n}^{k-1} y_{n}\right\rangle \\
& +G_{k}\left(\theta_{n}^{k} y_{n}, y\right) \geq 0, \forall y \in C .
\end{aligned}
$$

Furthermore, replacing n by n_{j} in the last inequality and using condition (C2), we obtain

$$
\begin{aligned}
& \left\|y-\theta_{n_{j}}^{k} y_{n_{j}}\right\| \cdot \frac{\left\|J \theta_{n_{j}}^{k} y_{n_{j}}-J \theta_{n_{j}}^{k-1} y_{n_{j}}\right\|}{r_{k, n_{j}}} \\
\geq & \frac{1}{r_{k, n_{j}}}\left\langle y-\theta_{n_{j}}^{k} y_{n_{j}}, J \theta_{n_{j}}^{k} y_{n_{j}}-J \theta_{n_{j}}^{k-1} y_{n_{j}}\right\rangle \\
\geq & -G_{k}\left(\theta_{n_{j}}^{k} y_{n_{j}}, y\right) \geq G_{k}\left(y, \theta_{n_{j}}^{k} y_{n_{j}}\right), \forall y \in C .
\end{aligned}
$$

By taking the limit as $j \rightarrow+\infty$ in the above inequality, for each $k=1,2, \cdots, m$ we have from the condition(C4),(29)and $\theta_{n_{j}}^{k} y_{n_{j}} \rightarrow p$ that $G_{k}(y, p) \leq 0, \forall y \in$ C.
For $0<t \leq 1$ and $y \in C$, define $y_{t}=t y+(1-t) p$. It follows from $y, p \in C$ that $y_{t} \in C$ which yields that $G_{k}\left(y_{t}, p\right) \leq 0$. It follows from the conditions $(\mathrm{C} 1)$ and (C4) that

$$
\begin{aligned}
& 0=G_{k}\left(y_{t}, y_{t}\right) \\
\leq & t G_{k}\left(y_{t}, y\right)+(1-t) G_{k}\left(y_{t}, p\right) \\
\leq & t G_{k}\left(y_{t}, y\right)
\end{aligned}
$$

That is

$$
G_{k}\left(y_{t}, y\right) \geq 0
$$

Let $t \rightarrow 0^{+}$, from the condition(C3), then we obtain that $G_{k}(p, y) \geq 0, \forall y \in C$.This implies that $p \in$ $\bigcap_{k=1}^{m} E P\left(G_{k}\right), k=1,2, \cdots, m$, i.e.

$$
p \in \bigcap_{k=1}^{m} G M E P\left(f_{k}, \varphi_{k}\right)=\bigcap_{k=1}^{m} E P\left(G_{k}\right)
$$

(c) Next we prove that $\lim _{n \rightarrow \infty}\left\|x_{n}-\Pi_{C} t_{n}\right\|=0$.

In fact, it follows from Lemma 3, Lemma 8, (13),
(17), (18) and $\frac{1}{\alpha}-$ Lipschitzian of B that

$$
\begin{aligned}
& \phi\left(x_{n}, \Pi_{C} t_{n}\right) \leq \phi\left(x_{n}, t_{n}\right)-\phi\left(\Pi_{C} t_{n}, t_{n}\right) \\
\leq & \phi\left(x_{n}, t_{n}\right)=V\left(x_{n}, J x_{n}-\lambda_{n} B x_{n}\right) \\
\leq & V\left(x_{n}, J x_{n}-\lambda_{n} B x_{n}+\lambda_{n} B x_{n}\right) \\
& -2\left\langle J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}\right)-x_{n}, \lambda_{n} B x_{n}\right\rangle \\
= & \phi\left(x_{n}, x_{n}\right)-2\left\langle t_{n}-x_{n}, \lambda_{n} B x_{n}\right\rangle \\
= & -2\left\langle t_{n}-x_{n}, \lambda_{n} B x_{n}\right\rangle \leq \frac{2}{c} \lambda_{n}^{2}\left\|B x_{n}-B p\right\|^{2} \\
\leq & \frac{2}{c \alpha^{2}} \lambda_{n}^{2}\left\|x_{n}-p\right\|^{2} \rightarrow 0(n \rightarrow \infty) .
\end{aligned}
$$

So, from Lemma 1, we have $\lim _{n \rightarrow \infty} \phi\left(x_{n}, \Pi_{C} t_{n}\right)=$ 0 which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-\Pi_{C} t_{n}\right\|=0 \tag{30}
\end{equation*}
$$

Thus, by the uniform continuity on any bounded sets of J, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J \Pi_{C} t_{n}\right\|=0 \tag{31}
\end{equation*}
$$

(d) Now we prove that $p \in V I(C, B)$.

Define $D: E \rightarrow 2^{E^{*}}$ as follows:

$$
D v=\left\{\begin{array}{l}
B v+N_{C}(v), v \in C, \\
\emptyset, v \notin C .
\end{array}\right.
$$

where $N_{C}(v)=\{w \in E:\langle v-u, w\rangle \geq 0, \forall u \in$ $C\}$ is the normal cone to C at $v \in C$. Then the multi-valued mapping D is maximal monotone and $D^{-1} 0=V I(C, B)$. Let $G(D)$ denote the graph of D and let $(v, w) \in G(D)$, then we have $w \in D v=$ $B v+N_{C}(v)$ and hence $w-B v \in N_{C}(v)$.Therefore, by $\Pi_{C} t_{n} \in C$,we have

$$
\begin{equation*}
\left\langle v-\Pi_{C} t_{n}, w-B v\right\rangle \geq 0 \tag{32}
\end{equation*}
$$

On the other hand, it follows from Lemma 2 that

$$
\left\langle v-\Pi_{C} t_{n}, J \Pi_{C} t_{n}-J t_{n}\right\rangle \geq 0
$$

That is

$$
\left\langle v-\Pi_{C} t_{n}, \frac{J x_{n}-J \Pi_{C} t_{n}}{\lambda_{n}}-B x_{n}\right\rangle \leq 0 .(33)
$$

It follows from (32) and (33) that

$$
\begin{aligned}
& \left\langle v-\Pi_{C} t_{n}, w\right\rangle \geq\left\langle v-\Pi_{C} t_{n}, B v\right\rangle \\
\geq & \left\langle v-\Pi_{C} t_{n}, B v\right\rangle \\
+ & \left\langle v-\Pi_{C} t_{n}, \frac{J x_{n}-J \Pi_{C} t_{n}}{\lambda_{n}}-B x_{n}\right\rangle \\
= & \left\langle v-\Pi_{C} t_{n}, B v-B \Pi_{C} t_{n}\right\rangle \\
+ & \left\langle v-\Pi_{C} t_{n}, B \Pi_{C} t_{n}-B x_{n}\right\rangle \\
+ & \left\langle v-\Pi_{C} t_{n}, \frac{J x_{n}-J \Pi_{C} t_{n}}{\lambda_{n}}\right\rangle \\
\geq & -\left\|v-\Pi_{C} t_{n}\right\| \cdot \frac{\left\|\Pi_{C} t_{n}-x_{n}\right\|}{\alpha} \\
- & \left\|v-\Pi_{C} t_{n}\right\| \cdot \frac{\left\|J \Pi_{C} t_{n}-J x_{n}\right\|}{a} \\
\geq & -M\left(\frac{\left\|\Pi_{C} t_{n}-x_{n}\right\|}{\alpha}+\frac{\left\|J \Pi_{C} t_{n}-J x_{n}\right\|}{a}\right) .
\end{aligned}
$$

Where $M=\sup \left\{\left\|v-\Pi_{C} t_{n}\right\|, n \in N\right\}$, letting $n=$ n_{k} and $k \rightarrow+\infty$, using (17),(18),(30) and (31), we obtain that $\langle v-p, w\rangle \geq 0$. Since D is maximal monotone, we have $p \in D^{-1} 0$ and hence $p \in V I(C, B)$. Thus we have $p \in F$.

Step 5 Finally, we prove that $p=\Pi_{F} x_{0}$.
From Lemma 2 and the definition of Q_{n}, we see that $x_{n}=\Pi_{Q_{n}} x_{0}$ and $\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0, \forall z \in$ Q_{n}. Since $F \subset Q_{n}$ for each $n \geq 0$, we have

$$
\left\langle x_{n}-w, J x_{0}-J x_{n}\right\rangle \geq 0, \forall w \in F .
$$

Let $n \rightarrow+\infty$ in the last inequality, we see that $\left\langle p-w, J x_{0}-J p\right\rangle \geq 0, \forall w \in F$. In view of Lemma 2, we can obtain that $p=\Pi_{F} x_{0}$. This completes the proof of Theorem 10.

In the spirit of Theorem 10, we can prove the following strong convergence theorem.

Theorem 11 Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E. Suppose $B: C \rightarrow E^{*}$ is an operator satisfying(B1)-(B3). For each $k=$ $1,2, \cdots, m$, let $A_{k}: C \rightarrow E^{*}$ be a continuous and monotone mapping, $\varphi_{k}: C \rightarrow R$ be a lower semicontinuous and convex functional, let $f_{k}: C \times C \rightarrow$ R be a bifunction satisfying(C1)-(C4) and $T_{i}: C \rightarrow$ $C, \forall i \in N$ be an infinite family of closed and quasi-ϕ-nonexpansive mapping, where

$$
F=\left[\bigcap_{i=0}^{+\infty} F\left(T_{i}\right)\right] \bigcap\left[\bigcap_{k=1}^{m} G M E P\left(f_{k}, \varphi_{k}\right)\right]
$$

$$
\bigcap V I(C, B) \neq \emptyset
$$

$T_{0}=I$.Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C \quad \text { chosen arbitrariy, } \\
y_{n}=J^{-1}\left(\alpha_{n} J \Pi_{C} J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}\right)+\right. \\
\left.\quad\left(1-\alpha_{n}\right) J z_{n}\right), \\
y_{n}=J^{-1}\left(\sum_{i=0}^{+\infty} \beta_{n}^{(i)} J T_{i} x_{n}\right), \tag{34}\\
u_{n}=T_{r_{m, n}}^{G_{m}} T_{r_{m-1, n}}^{G_{m-1}} \cdots T_{r_{2, n}}^{G_{2}} T_{r_{1, n}}^{G_{1}} y_{n}, \\
C_{n}=\left\{z \in C: \phi\left(z, u_{n}\right) \leq\left(1-\alpha_{n}\right) \phi\left(z, z_{n}\right)+\right. \\
\left.\quad \alpha_{n} \phi\left(z, x_{n}\right) \leq \phi\left(z, x_{n}\right)\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{n}-J x_{0}\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \bigcap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

where $\lambda_{n} \subset[a, b]$ for some a, b with $0<a<b<c \alpha$, where $\frac{1}{c}$ is 2 -uniformly convexity constant of E, for each $k=1,2, \cdots, m,\left\{r_{k, n}\right\}_{n=1}^{+\infty} \subset(0,+\infty)$ satisfying $\liminf _{n \rightarrow+\infty} r_{k, n}>0$,

$$
\begin{gathered}
T_{r_{k, n}}^{G_{k}}(x)=\left\{z \in C: \frac{1}{r_{k, n}}\langle y-z, J z-J x\rangle+\right. \\
\left.G_{k}(z, y) \geq 0, \forall y \in C\right\}
\end{gathered}
$$

$\left\{\alpha_{n}\right\},\left\{\beta_{n}^{(i)}\right\}, i \in N$ are real sequences in [0,1] satisfies the conditions: $\forall n \geq 1,0 \leq \beta_{n}^{(i)} \leq$ $1, \sum_{i=0}^{\infty} \beta_{n}^{(i)}=1, \liminf _{n \rightarrow \infty}\left(1-\alpha_{n}\right) \beta_{n}^{(0)} \beta_{n}^{(i)}>0, \forall i \in$ N.Where $G_{k}(z, y)=f_{k}(z, y)+\varphi_{k}(y)-\varphi_{k}(z)+$ $\left\langle A_{k} z, y-z\right\rangle, \forall z, y \in C$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$.

Remark 12 Theorem 11 improves Theorem 3.1 of Takahashi and Zembayashi [13] in the following aspects:
(a) From a relatively nonexpansive mapping to an infinite family of quasi- ϕ-nonexpansive mapping.
(b) Considering the variational inequality problem from zero to one.
(c) From an equilibrium problem to a system of generalized mixed equilibrium problem.

Remark 13 It is worth pointing out that Theorem3.1 and Theorem3.2 of Yang, Zhao and Kim[18] need to be held in the framework of the uniformly smooth and uniformly convex real Banach space. Since, the proofs of Theorem 3.1 and Theorem 3.2 in [18] make use of Lemma 5, but Lemma 5 holds under the uniformly convex space.

Acknowledgements: The research was supported by the National Natural Science Foundation of China (Grant No.10971194) and Scientific Research Project of Educational Commission of Zhejiang Province of China (Grant No.Y20112300).

References:

[1] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems,Math. Student, 63 ,1994, pp.123-145.
[2] S. Saewan, P. Kumam, K. Wattanawitoon, Convergence theorem based on a new hybrid projection method for finding a common solution of generalized equilibrium and variational inequality problems in Banach spaces, Abstr. Appl. Anal., 2010, 2010, pp. 26 pages. Article ID 734126.
[3] S. Saewan, P. Kumam, Modified hybrid block iterative algorithm for convex feasibility problems and generalized equilibrium problems for uniformly quasi- ϕ-asymptotically non- expansive mappings, Abstr. Appl. Anal., 2010, 2010, pp. 22 pages. Article ID 357120.
[4] S. Saewan, P. Kumam, A hybrid iterative scheme for a maximal monotone operator and two countable families of relatively quasi-nonexpansive mappings for generalized mixed equilibrium and variational inequality problems, Abstr. Appl. Anal., 2010, 2010, 31 pages. Article ID 123027.
[5] K. Wattanawitoon, P. Kumam, Generalized mixed equilibrium problems for maximal monotone operators and two relatively quasi- nonexpansive mappings, Thai J. Math., 9(1), 2011, pp.165-189.
[6] N. Petrot, K. Wattanawitoon, P. Kumam, A hybrid projection method for generalized mixed equilibrium problems and fixed point problemsin Banach spaces, Nonlinear Anal. Hybrid Syst., 2010, doi:10.1016/j.nahs.2010. 03.008.
[7] P. Cholamjiak, A hybrid iterative scheme for equilibrium problems , variatonal inequality problems and fixed points problems in Banach spaces, Fixed Point Theory Appl., 2009, 2009, pp. 18 pages. Article ID 719360.
[8] C. Martinez-Yanes, H.K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64, 2006, pp.24002411.
[9] X. Qin, Y. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear Anal., 67, 2007, pp. 19581965.
[10] S. Plubtieng, K. Ungchittrakool, Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space, J. Approx. Theory,149, 2007, pp. 103115.
[11] X. L. Qin, Y. J. Cho, S. M. Kang, H. Y. Zhou, Convergence of a hybrid projection algorithm in

Banach spaces, Acta Appl. Math., 108, 2009, pp.299-313.
[12] R. Wangkeeree, R. Wangkeeree, The shrinking projection method for solving variational inequality problems and fixed point problems in Banach spaces, Abstract Appl. Anal., 2009, 2009, pp. 26 pages. Article ID 624798.
[13] W. Takahashi, K. Zembayashi, Strong convergence theorems by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl., 2008,2008, pp. 11 pages. Article ID 528476.
[14] Y. I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, in: A.G. Kartosator (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996, pp. 15-50.
[15] S. Reich, A weak convergence theorem for the alternating method with Bregman distance, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996.
[16] D. Butnariu, S. Reich, A.J. Zaslavski, Weak convergence of orbits of nonlinear operators in reflexive Banach spaces, Numerical Functional Analysis and Optimization,24, 2003, pp. 489508.
[17] H. Y. Zhou, G. L. Gao, B. Tan, Convergence theorems of a modified hybrid algorithm for a family of quasi- ϕ-asymptotically nonexpansive mappings, Journal of Applied Mathematics and Computing, 32,2010, pp. 453-464.
[18] Li Yang, Fuhai Zhao, Jong Kyu Kim, Hybrid projection method for generalized mixed equilibrium problem and fixed point problem of infinite family of asymptotically quasi- ϕ nonexpansive mappings in Banach spaces, Applied Mathematics and Computation,218, 2012, pp.6072-6082.
[19] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis, 16, 1991, pp. 1127-1138.

